scispace - formally typeset
Search or ask a question
Author

B. Mishra

Bio: B. Mishra is an academic researcher from Bhabha Atomic Research Centre. The author has contributed to research in topics: Radical & Radiolysis. The author has an hindex of 20, co-authored 38 publications receiving 1928 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cytotoxicity studies in different cell lines indicated that the toxicity of curcumin increased with increasing uptake, and sub-cellular fractionation of curCumin-loaded MCF7 cells supported the differential distribution ofCurcumin in membrane, cytoplasm and nuclear compartments of cell with maximum localization in the membrane.

314 citations

Journal ArticleDOI
TL;DR: It is confirmed that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential, and quantum chemical calculations with density functional theory have been performed to support the experimental observations.

199 citations

Journal ArticleDOI
TL;DR: It is concluded that curcumin exhibits both antioxidant/pro-oxidant activity, in a concentration dependent manner.

177 citations

Journal ArticleDOI
TL;DR: The aqueous extract of the fruits of Emblica officinalis, Terminalia chebula and Terminalia belerica and their equiproportional mixture triphala was evaluated for their in vitro antioxidant activity and revealed that all three constituents of Triphala are active and they exhibit slightly different activities under different conditions.
Abstract: The aqueous extract of the fruits of Emblica officinalis (T1), Terminalia chebula (T2) and Terminalia belerica (T3) and their equiproportional mixture triphala were evaluated for their in vitro antioxidant activity. gamma-Radiation induced strand break formation in plasmid DNA (pBR322) was effectively inhibited by triphala and its constituents in the concentration range 25-200 microg/mL with a percentage inhibition of T1 (30%-83%), T2 (21%-71%), T3 (8%-58%) and triphala (17%-63%). They also inhibited radiation induced lipid peroxidation in rat liver microsomes effectively with IC(50) values less than 15 microg/mL. The extracts were found to possess the ability to scavenge free radicals such as DPPH and superoxide. As the phenolic compounds present in these extracts are mostly responsible for their radical scavenging activity, the total phenolic contents present in these extracts were determined and expressed in terms of gallic acid equivalents and were found to vary from 33% to 44%. These studies revealed that all three constituents of triphala are active and they exhibit slightly different activities under different conditions. T1 shows greater efficiency in lipid peroxidation and plasmid DNA assay, while T2 has greater radical scavenging activity. Thus their mixture, triphala, is expected to be more efficient due to the combined activity of the individual components.

145 citations

Journal ArticleDOI
TL;DR: Ethanol extract of F. racemosa acts as a potent antioxidant and a probable radioprotector and the cytokinesis-block proliferative index indicated that FRE does not alter radiation induced cell cycle delay.
Abstract: dependent DPPH, ABTS �� , hydroxyl radical and superoxide radical scavenging and inhibition of lipid peroxidation with IC50 comparable with tested standard compounds. In vitro radioprotective potential of FRE was studied using micronucleus assay in irradiated Chinese hamster lung fibroblast cells (V79). Pretreatment with different doses of FRE 1h prior to 2 Gy g-radiation resulted in a significant (P < 0.001) decrease in the percentage of micronucleated binuclear V79 cells. Maximum radioprotection was observed at 20mg/ml of FRE. The radioprotection was found to be significant (P < 0.01) when cells were treated with optimum dose of FRE (20mg/ml) 1 h prior to 0.5, 1, 2, 3 and 4 Gy g-irradiation compared to the respective radiation controls. The cytokinesis-block proliferative index indicated that FRE does not alter radiation induced cell cycle delay. Based on all these results we conclude that the ethanol extract of F. racemosa acts as a potent antioxidant and a probable radioprotector.

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research.
Abstract: Eating five servings of fruits and vegetables per day! This is what is highly recommended and heavily advertised nowadays to the general public to stay fit and healthy! Drinking green tea on a regular basis, eating chocolate from time to time, as well as savoring a couple of glasses of red wine per day have been claimed to increase life expectancy even further! Why? The answer is in fact still under scientific scrutiny, but a particular class of compounds naturally occurring in fruits and vegetables is considered to be crucial for the expression of such human health benefits: the polyphenols! What are these plant products really? What are their physicochemical properties? How do they express their biological activity? Are they really valuable for disease prevention? Can they be used to develop new pharmaceutical drugs? What recent progress has been made toward their preparation by organic synthesis? This Review gives answers from a chemical perspective, summarizes the state of the art, and highlights the most significant advances in the field of polyphenol research.

1,902 citations

01 Feb 1995
TL;DR: In this paper, the unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio using DFT, MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set.
Abstract: : The unpolarized absorption and circular dichroism spectra of the fundamental vibrational transitions of the chiral molecule, 4-methyl-2-oxetanone, are calculated ab initio. Harmonic force fields are obtained using Density Functional Theory (DFT), MP2, and SCF methodologies and a 5S4P2D/3S2P (TZ2P) basis set. DFT calculations use the Local Spin Density Approximation (LSDA), BLYP, and Becke3LYP (B3LYP) density functionals. Mid-IR spectra predicted using LSDA, BLYP, and B3LYP force fields are of significantly different quality, the B3LYP force field yielding spectra in clearly superior, and overall excellent, agreement with experiment. The MP2 force field yields spectra in slightly worse agreement with experiment than the B3LYP force field. The SCF force field yields spectra in poor agreement with experiment.The basis set dependence of B3LYP force fields is also explored: the 6-31G* and TZ2P basis sets give very similar results while the 3-21G basis set yields spectra in substantially worse agreements with experiment. jg

1,652 citations

Journal ArticleDOI
TL;DR: Curcumin exhibits great promise as a therapeutic agent, and is currently in human clinical trials for a variety of conditions, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis and Alzheimer’s disease.
Abstract: Curcumin is the active ingredient in the traditional herbal remedy and dietary spice turmeric (Curcuma longa). Curcumin has a surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. The pleiotropic activities of curcumin derive from its complex chemistry as well as its ability to influence multiple signaling pathways, including survival pathways such as those regulated by NF-κB, Akt, and growth factors; cytoprotective pathways dependent on Nrf2; and metastatic and angiogenic pathways. Curcumin is a free radical scavenger and hydrogen donor, and exhibits both pro- and antioxidant activity. It also binds metals, particularly iron and copper, and can function as an iron chelator. Curcumin is remarkably non-toxic and exhibits limited bioavailability. Curcumin exhibits great promise as a therapeutic agent, and is currently in human clinical trials for a variety of conditions, including multiple myeloma, pancreatic cancer, myelodysplastic syndromes, colon cancer, psoriasis and Alzheimer’s disease.

1,599 citations

Book ChapterDOI
TL;DR: Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses.
Abstract: Turmeric, derived from the plant Curcuma longa, is a gold-colored spice commonly used in the Indian subcontinent, not only for health care but also for the preservation of food and as a yellow dye for textiles. Curcumin, which gives the yellow color to turmeric, was first isolated almost two centuries ago, and its structure as diferuloylmethane was determined in 1910. Since the time of Ayurveda (1900 Bc) numerous therapeutic activities have been assigned to turmeric for a wide variety of diseases and conditions, including those of the skin, pulmonary, and gastrointestinal systems, aches, pains, wounds, sprains, and liver disorders. Extensive research within the last half century has proven that most of these activities, once associated with turmeric, are due to curcumin. Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antiviral, antibacterial, antifungal, and anticancer activities and thus has a potential against various malignant diseases, diabetes, allergies, arthritis, Alzheimer's disease, and other chronic illnesses. These effects are mediated through the regulation of various transcription factors, growth factors, inflammatory cytokines, protein kinases, and other enzymes. Curcumin exhibits activities similar to recently discovered tumor necrosis factor blockers (e.g., HUMIRA, REMICADE, and ENBREL), a vascular endothelial cell growth factor blocker (e.g., AVASTIN), human epidermal growth factor receptor blockers (e.g., ERBITUX, ERLOTINIB, and GEFTINIB), and a HER2 blocker (e.g., HERCEPTIN). Considering the recent scientific bandwagon that multitargeted therapy is better than monotargeted therapy for most diseases, curcumin can be considered an ideal "Spice for Life".

1,467 citations

Journal ArticleDOI
TL;DR: The mechanism of action of the natural antioxidant compounds and assays and their reaction mechanisms can help in evaluating the antioxidant activity of various antioxidant compounds as well as in the development of novel antioxidants.
Abstract: The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ROS and RNS create oxidative stress in different pathophysiological conditions. The reported chemical evidence suggests that dietary antioxidants help in disease prevention. The antioxidant compounds react in one-electron reactions with free radicals in vivo/in vitro and prevent oxidative damage. Therefore, it is very important to understand the reaction mechanism of antioxidants with the free radicals. This review elaborates the mechanism of action of the natural antioxidant compounds and assays for the evaluation of their antioxidant activities. The reaction mechanisms of the antioxidant assays are briefly discussed (165 references). Practical applications: understanding the reaction mechanisms can help in evaluating the antioxidant activity of various antioxidant compounds as well as in the development of novel antioxidants.

1,391 citations