scispace - formally typeset
Search or ask a question
Author

B.S. Murty

Bio: B.S. Murty is an academic researcher from Indian Institute of Technology, Hyderabad. The author has contributed to research in topics: Nanocrystalline material & Alloy. The author has an hindex of 54, co-authored 408 publications receiving 12537 citations. Previous affiliations of B.S. Murty include Indian Institute of Technology Kharagpur & Indian Institute of Technology Madras.


Papers
More filters
Journal ArticleDOI
TL;DR: A review of the literature on grain refinement by heterogeneous nucleation and alloying can be found in this paper, where the types of grain refiner, Al-Ti-B master alloys in particular, and their methods of manufacture are discussed.
Abstract: Grain refinement of aluminium and its alloys is common industrial practice. The field has been extensively investigated by many workers over the past 50 years, not only to develop efficient grain refiners for different aluminium alloys, but also to achieve an understanding of the mechanism of grain refinement. The present review confines itself to the literature on grain refinement by heterogeneous nucleation and alloying. Initially, the fundamentals of grain refinement by inoculants are outlined. The types of grain refiner, Al-Ti-B master alloys in particular, and their methods of manufacture are next discussed. The grain refining tests to assess the efficiency of the grain refiners and the grain refining behaviour of aluminium alloys are also discussed in brief. The performance of a grain refiner, as well as the response of an aluminium alloy to grain refinement, is influenced by the microstructure of the grain refiner as controlled by the process parameters involved in its preparation and the alloying elements present in the aluminium alloy. The roles of these factors, and particularly the roles of poisoning elements such as Si, Cr, Zr, Li, are reviewed. The paper also reviews the mechanisms of grain refinement, the fading and poisoning phenomena, and the trends in the development of new grain refiners for aluminium alloys containing poisoning elements.

700 citations

Journal ArticleDOI
TL;DR: In this paper, the decomposition of an equiatomic AlCoCrCuFeNi high-entropy alloy produced by splat quenching and casting was investigated by the analytical high-resolution methods: transmission electron microscopy and three-dimensional atom probe.

612 citations

Journal ArticleDOI
TL;DR: In this article, an account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years, highlighting the success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes.
Abstract: An account is given of the research that has been carried out on mechanical alloying/milling (MA/MM) during the past 25 years. Mechanical alloying, a high energy ball milling process, has established itself as a viable solid state processing route for the synthesis of a variety of equilibrium and non-equilibrium phases and phase mixtures. The process was initially invented for the production of oxide dispersion strengthened (ODS) Ni-base superalloys and later extended to other ODS alloys. The success of MA in producing ODS alloys with better high temperature capabilities in comparison with other processing routes is highlighted. Mechanical alloying has also been successfully used for extending terminal solid solubilities in many commercially important metallic systems. Many high melting intermetallics that are difficult to prepare by conventional processing techniques could be easily synthesised with homogeneous structure and composition by MA. It has also, over the years, proved itself to be superior to rapid solidification processing as a non-equilibrium processing tool. The considerable literature on the synthesis of amorphous, quasicrystalline, and nanocrystalline materials by MA is critically reviewed. The possibility of achieving solid solubility in liquid immiscible systems has made MA a unique process. Reactive milling has opened new avenues for the solid state metallothermic reduction and for the synthesis of nanocrystalline intermetallics and intermetallic matrix composites. Despite numerous efforts, understanding of the process of MA, being far from equilibrium, is far from complete, leaving large scope for further research in this exciting field.

593 citations

Journal ArticleDOI
TL;DR: In this article, alloying behavior was investigated using XRD in AlCoCrCuFe and NiCoCrcuFe equi-atomic high entropy alloys synthesized by mechanical alloying (MA) and spark plasma sintering (SPS).
Abstract: Multi-component high entropy alloys (HEAs) are observed to form simple solid solutions in contrary to general perception that complex compounds may form in such multi-component equi-atomic alloys. In the present study, alloying behavior was investigated using XRD in AlCoCrCuFe and NiCoCrCuFe equi-atomic high entropy alloys synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). Simple FCC and BCC phases evolved after MA, while Cu-rich FCC and sigma (σ) phases evolved along with FCC and BCC phases after SPS. Further, NiCoCuFe, NiCoCrFe and NiCoFe equi-atomic alloys were investigated to confirm the formation of Cu-rich FCC, and σ phases. The hardness was observed to be 770 ± 10 HV for AlCoCrCuFe and 400 ± 10 HV for NiCoCrCuFe. Phase evolution after MA and SPS indicate that configurational entropy is not sufficient enough to suppress the formation of Cu-rich FCC, and σ phases, and enthalpy of mixing appears to play an important role in determining the phase formation in high entropy alloys after sintering.

302 citations

Journal ArticleDOI
TL;DR: In this article, the diffusion coefficients of Co, Cr, Fe and Mn tracers were determined in polycrystalline CoCrFeNi and CoCr FeMnNi HEAs using the radiotracer method in the temperature interval of 1073-1373 K.

283 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: High entropy alloys (HEAs) are barely 12 years old as discussed by the authors, and the field has stimulated new ideas and inspired the exploration of the vast composition space offered by multi-principal element alloys.

4,693 citations

Journal ArticleDOI
TL;DR: The concept of high entropy introduces a new path of developing advanced materials with unique properties, which cannot be achieved by the conventional micro-alloying approach based on only one dominant element as mentioned in this paper.

4,394 citations