scispace - formally typeset
Search or ask a question
Author

B. ten Haken

Other affiliations: Slovak Academy of Sciences
Bio: B. ten Haken is an academic researcher from University of Twente. The author has contributed to research in topics: Magnetic field & Superconductivity. The author has an hindex of 28, co-authored 119 publications receiving 2605 citations. Previous affiliations of B. ten Haken include Slovak Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a scaling relation for the upper critical field (Hc2) with temperature (T) and A15 composition was proposed, which is more consistent than the usual Ekin unification of strain and temperature dependence.
Abstract: Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition. Measurements of Hc2(T) in inevitably inhomogeneous wires, as well as analysis of literature results, have shown that all available Hc2(T) data can be accurately described by a single relation from the microscopic theory. This relation also holds for inhomogeneity averaged, effective, Hc2*(T) results and can be approximated by , with t = T/Tc. Knowing Hc2*(T) implies that Jc(T) is also known. We highlight deficiencies in the Summers/Ekin relations, which are not able to account for the correct Jc(T) dependence. Available Jc(H) results indicate that the magnetic field dependence for all wires from T up to about 80% of the maximum Hc2 can be described with Kramer's flux shear model, if nonlinearities in Kramer plots when approaching the maximum Hc2 are attributed to A15 inhomogeneities. The strain () dependence is introduced through a temperature and strain dependent Hc2*(T,) and Ginzburg–Landau (GL) parameter κ1(T,) and a strain dependent critical temperature Tc(). This is more consistent than the usual Ekin unification of strain and temperature dependence, which uses two separate and different dependences on Hc2*(T) and Hc2*(). Using a correct temperature dependence and accounting for the A15 inhomogeneities leads to the remarkably simple relation , where C is a constant, s() represents the normalized strain dependence of Hc2*(0) and h = H/Hc2*(T,). Finally, a new relation for s() is proposed, which is an asymmetric version of our earlier deviatoric strain model and based on the first, second and third strain invariants. The new scaling relation solves a number of much debated issues with respect to Jc scaling in Nb3Sn and is therefore of importance to the applied community, who use scaling relations to analyse magnet performance from wire results.

176 citations

Journal Article
TL;DR: In this paper, the scaling relations for the critical current density (Jc) in Nb3Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition.
Abstract: We review the scaling relations for the critical current density (Jc) in Nb3Sn wires and include recent findings on the variation of the upper critical field (Hc2) with temperature (T) and A15 composition. Measurements of Hc2(T) in inevitably inhomogeneous wires, as well as analysis of literature results, have shown that all available Hc2(T) data can be accurately described by a single relation from the microscopic theory. This relation also holds for inhomogeneity averaged, effective, Hc2*(T) results and can be approximated by Hc2(t)=Hc2(0) = 1-t1.52, with t = T=Tc.Knowing Hc2*(T) implies that also Jc(T) is known. We highlight deficiencies in the Summers/Ekin relations, which are not able to account for the correct Jc(T) dependence. Available Jc(H) results indicate that the magnetic field dependence for all wires from mu0H = 1 T up to about 80 percent of the maximum Hc2 can be described with Kramer's flux shear model, if non-linearities in Kramer plots when approaching the maximum Hc2 are attributed to A15 inhomogeneities. The strain (e) dependence is introduced through a temperature and strain dependent Hc2*(T,e) and Ginzburg-Landau parameter kappa1(T,e) and a strain dependent critical temperature Tc(e). This is more consistent than the usual Ekin unification of strain and temperature dependence, which uses two separate and different dependencies on Hc2*(T) and Hc2*(e). Using a correct temperature dependence and accounting for the A15 inhomogeneities leads to the remarkable simple relation Jc(H,T,e)= (C/mu0H)s(e)(1-t1.52)(1-t2)h0.5(1-h)2, where C is a constant, s(e) represents the normalized strain dependence of Hc2*(0) andh = H/Hc2*(T,e). Finally, a new relation for s(e) is proposed, which is an asymmetric version of our earlier deviatoric strain model and based on the first, second and third strain invariants. The new scaling relation solves a number of much debated issues withrespect to Jc scaling in Nb3Sn and is therefore of importance to the applied community, who use scaling relations to analyze magnet performance from wire results.

145 citations

Journal ArticleDOI
TL;DR: In this paper, the critical current of six different Nb3Sn multifilamentary wires is investigated as a function of temperature, magnetic field, and strain, and a relation for a critical temperature (Tc) that depends on the deviatoric strain is proposed and applied to interpret the results.
Abstract: The critical current (Ic) of six different Nb3Sn multifilamentary wires is investigated as a function of temperature, magnetic field, and strain. A relation for a critical temperature (Tc) that depends on the deviatoric strain is proposed and applied to interpret the results. First, a short review is given on the flux-pinning relations that are used to introduce a strain dependent Tc in a relation for the Ic as a function of field and temperature. The conductor samples are investigated in two different deformation states, namely, in a spiraled shape on a Ti sample holder and a straight section soldered onto a brass substrate. The brass substrate is used to apply a compressive or tensile axial strain to the conductor. The Ic in the different samples prepared from a single conductor type can be described very well with a single set of critical properties and strain parameters. In particular, in the strain regime where the matrix deformation is limited and the superconductor is axially compressed, the proposed strain relation is very accurate. The small variation in the strain parameter between the six conductors investigated suggests that this strain parameter is an intrinsic property of Nb3Sn.

123 citations

Journal ArticleDOI
TL;DR: In this article, the dynamic resistance in a slab-like superconductor is calculated, taking into account a field-dependent critical current density, and the model predicts the observed dependence of dynamic resistance on field amplitude, field frequency and transport current.
Abstract: The dynamic resistance in a slab-like superconductor is calculated, taking into account a field-dependent critical current density. In superconductors carrying DC transport current in an AC external magnetic field, the dynamic resistance causes a transport loss which depends on the amplitude and frequency of this field as well as on the transport current. This resistance is calculated analytically in a critical-state model applied to a superconducting slab in a parallel field. The field has a general periodic time dependence and for the superconductor a relation between critical current and momentary magnetic field as in the Kim model is assumed. The dynamic resistance appears only at field amplitudes larger than the so-called threshold field, which depends on the transport current. The model predictions are compared with experimental results obtained with a Bi-2223/Ag tape at liquid-nitrogen temperature. At small field amplitude and at low transport current, the derived model predicts the observed dependence of dynamic resistance on field amplitude, field frequency and transport current. For a larger field amplitude and simultaneous high transport current, the resistance is found to be larger than the model predicts. This is probably due to the not completely slab-like geometry and/or to a different field dependence of the critical current density in a high AC field.

118 citations

Journal ArticleDOI
TL;DR: In this article, the Nb3Al phase in these multifilamentary conductors is prepared by phase transformation from supersaturated Nb(Al) bcc solid solution and show high-field critical current densities much larger than those for conventionally prepared Nb 3Al conductors, where the phase is known to be off-stoichiometric.
Abstract: Strain effects on critical current densities have been examined for conductors containing nearly stoichiometric Nb3Al filaments with fine grains. The Nb3Al phase in these multifilamentary conductors are prepared by phase transformation from supersaturated Nb(Al) bcc solid solution and show high-field critical current densities much larger than those for conventionally prepared Nb3Al conductors, where the Nb3Al phase is known to be off-stoichiometric. The degradation of critical current densities with −0.7% intrinsic strain is ca. 20% at 12 T, comparable with those for conventional Nb3Al conductors of high strain tolerance.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a literature review of the methods for computing ac losses in HTS tapes, wires, and devices and provides an estimation of the losses occurring in a variety of power applications.
Abstract: Numerical modeling of superconductors is widely recognized as a powerful tool for interpreting experimental results, understanding physical mechanisms, and predicting the performance of high-temperature-superconductor (HTS) tapes, wires, and devices. This is particularly true for ac loss calculation since a sufficiently low ac loss value is imperative to make these materials attractive for commercialization. In recent years, a large variety of numerical models, which are based on different techniques and implementations, has been proposed by researchers around the world, with the purpose of being able to estimate ac losses in HTSs quickly and accurately. This paper presents a literature review of the methods for computing ac losses in HTS tapes, wires, and devices. Technical superconductors have a relatively complex geometry (filaments, which might be twisted or transposed, or layers) and consist of different materials. As a result, different loss contributions exist. In this paper, we describe the ways of computing such loss contributions, which include hysteresis losses, eddy-current losses, coupling losses, and losses in ferromagnetic materials. We also provide an estimation of the losses occurring in a variety of power applications.

290 citations

Journal ArticleDOI
TL;DR: Three techniques for sentinel lymph node biopsy that are not radioisotope dependent or that refine the existing method are assessed: indocyanine green fluorescence, contrast-enhanced ultrasound using microbubbles, and superparamagnetic iron oxide nanoparticles.
Abstract: The existing standard for axillary lymph node staging in breast cancer patients with a clinically and radiologically normal axilla is sentinel lymph node biopsy with a radioisotope and blue dye (dual technique). The dependence on radioisotopes means that uptake of the procedure is limited to only about 60% of eligible patients in developed countries and is negligible elsewhere. We did a systematic review to assess three techniques for sentinel lymph node biopsy that are not radioisotope dependent or that refine the existing method: indocyanine green fluorescence, contrast-enhanced ultrasound using microbubbles, and superparamagnetic iron oxide nanoparticles. Our systematic review suggested that these new methods for sentinel lymph node biopsy have clinical potential but give high levels of false-negative results. We could not identify any technique that challenged the existing standard procedure. Further assessment of these techniques against the standard dual technique in randomised trials is needed.

265 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of the available literature on simplified, well-defined (quasi-)homogeneous laboratory samples. But no specific review for Nb3Sn is available.
Abstract: Significant efforts can be found throughout the literature to optimize the current-carrying capacity of Nb3Sn superconducting wires. The achievable transport current density in wires depends on the A15 composition, morphology and strain state. The A15 sections in wires contain, due to compositional inhomogeneities resulting from solid-state diffusion A15 formation reactions, a distribution of superconducting properties. The A15 grain size can be different from wire to wire, and is also not necessarily homogeneous across the A15 regions. Strain is always present in composite wires, and the strain state changes as a result of thermal contraction differences and Lorentz forces in magnet systems. To optimize the transport properties, it is thus required to identify how composition, grain size and strain state influence the superconducting properties. This is not possible accurately in inhomogeneous and spatially complex systems such as wires. This article therefore gives an overview of the available literature on simplified, well-defined (quasi-)homogeneous laboratory samples. After more than 50 years of research on superconductivity in Nb3Sn, a significant amount of results are available, but these are scattered over a multitude of publications. Two reviews exist on the basic properties of A15 materials in general, but no specific review for Nb3Sn is available. This article is intended to provide such an overview. It starts with a basic description of the niobium–tin intermetallic. After that, it maps the influence of Sn content on the electron–phonon interaction strength and on the field–temperature phase boundary. The literature on the influence of Cu, Ti and Ta additions will then be summarized briefly. This is followed by a review of the effects of grain size and strain. The article concludes with a summary of the main results.

237 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed recent progress in overcoming these technological problems for high temperature superconducting magnet (HTS magnet technology) and REBCO magnet technology, especially in the case of REBCo conductors, and concluded that the performance degradation due to excessive mechanical stresses applied along the longitudinal and transverse direction is the major problem for HTS magnet.
Abstract: The use of magnets made of high temperature superconductors (HTS) such as BSCCO and REBCO easily provide higher magnetic fields and higher operating temperatures, enabling dramatic improvements in superconducting magnet technology. The LTS magnet technology is very well summarized in text books written by M. N. Wilson (Superconducting magnets, Clarendon Press Oxford, 1983) and Y. Iwasa (Case studies in superconducting magnets, 2nd edition, Springer, 2009), covering such topics as stability, protection, ac loss and so forth. To the contrary, HTS conductors were commercialized only recently and therefore the magnet technology for HTS conductors remains undeveloped, especially so in the case of REBCO conductors. The technological problems for HTS coils thus far encountered are 1) an enormous effect of a screening current-induced magnetic field, 2) degradation in the coil performance due to excessive mechanical stresses applied along the longitudinal and transverse direction, and 3) the difficulty in protecting the magnet in the case of an abrupt thermal runaway. This paper reviews recent progress in overcoming these technological problems for HTS magnets. Both BSCCO and REBCO conductors have been used for HTS magnets in areas such as high field facilities, NMR, MRI, magnetic levitation trains and so forth. The effect of the screening current is the major problem for NMR, MRI, and accelerators, as it substantially distorts spatial field homogeneity and temporal field stability; on the other hand, degradation due to excessive stresses is substantial for high field magnets. Additionally, coil protection is a common and substantive problem among high current density HTS magnets in general. World-wide activities in developing BSCCO and REBCO magnets are overviewed in this paper.

203 citations

Journal ArticleDOI
30 Oct 2008-Nature
TL;DR: In this article, the authors investigate low-speed fracture instabilities in silicon using quantum-mechanical hybrid, multi-scale modelling and single-crystal fracture experiments and find that beyond the very tip of the crack, when fracture speed is slow enough, bonds are broken one atomic layer below the fracture plane leading to a systematic downward deflection of a crack.
Abstract: Multiscale models predict detailed features of surfaces left by crack propagation and rationalize the occurrence of fracture instabilities in a technologically important material, silicon. As a crack propagates along the most stable cleavage plane in silicon at relatively low speeds (800 metres per second), an instability suddenly appears. The authors find that beyond the very tip of the crack, when fracture speed is slow enough, bonds are broken one atomic layer below the fracture plane leading to a systematic downward deflection of the crack. Conversely, deflecting of fracture on another cleavage plane of silicon occur when the fracture speed is very high. Preliminary simulations reveal that similar instabilities could occur in diamond and silicon carbide. When a brittle material is loaded to the limit of its strength, it fails by the nucleation and propagation of a crack1. The conditions for crack propagation are created by stress concentration in the region of the crack tip and depend on macroscopic parameters such as the geometry and dimensions of the specimen2. The way the crack propagates, however, is entirely determined by atomic-scale phenomena, because brittle crack tips are atomically sharp and propagate by breaking the variously oriented interatomic bonds, one at a time, at each point of the moving crack front1,3. The physical interplay of multiple length scales makes brittle fracture a complex ‘multi-scale’ phenomenon. Several intermediate scales may arise in more complex situations, for example in the presence of microdefects or grain boundaries. The occurrence of various instabilities in crack propagation at very high speeds is well known1, and significant advances have been made recently in understanding their origin4,5. Here we investigate low-speed propagation instabilities in silicon using quantum-mechanical hybrid, multi-scale modelling and single-crystal fracture experiments. Our simulations predict a crack-tip reconstruction that makes low-speed crack propagation unstable on the (111) cleavage plane, which is conventionally thought of as the most stable cleavage plane. We perform experiments in which this instability is observed at a range of low speeds, using an experimental technique designed for the investigation of fracture under low tensile loads. Further simulations explain why, conversely, at moderately high speeds crack propagation on the (110) cleavage plane becomes unstable and deflects onto (111) planes, as previously observed experimentally6,7.

199 citations