scispace - formally typeset
Search or ask a question
Author

B Wermuth

Bio: B Wermuth is an academic researcher from Baylor College of Medicine. The author has contributed to research in topics: 7-Dehydrocholesterol reductase & Reductase. The author has an hindex of 1, co-authored 1 publications receiving 425 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Southern hybridization analysis of human genomic DNA indicates a multigene system for aldose reductase, suggesting the existence of additional proteins, and the aldo-keto reductases superfamily of proteins may have a more significant and hitherto not fully appreciated role in general cellular metabolism.

434 citations


Cited by
More filters
Journal Article
TL;DR: This investigation expands the horizon of Nrf2-regulated genes, highlights the cross-talk between various metabolic pathways, and divulges the pivotal role played by NRF2 in regulating cellular defenses against carcinogens and other toxins.
Abstract: Electrophiles formed during metabolic activation of chemical carcinogens and reactive oxygen species generated from endogenous and exogenous sources play a significant role in carcinogenesis. Cancer chemoprevention by induction of phase 2 proteins to counteract the insults of these reactive intermediates has gained considerable attention. Nuclear factor E2 p45-related factor 2 (Nrf2), a bZIP transcription factor, plays a central role in the regulation (basal and or inducible expression) of phase 2 genes by binding to the “antioxidant response element” in their promoters. Identification of novel Nrf2-regulated genes is likely to provide insight into cellular defense systems against the toxicities of electrophiles and oxidants and may define effective targets for achieving cancer chemoprevention. Sulforaphane is a promising chemopreventive agent that exerts its effect by strong induction of phase 2 enzymes via activation of Nrf2. In the present study, a transcriptional profile of small intestine of wild-type (nrf2 +/+) and knock out (nrf2 −/−) mice treated with vehicle or sulforaphane (9 μmol/day for 1 week, p.o.) was generated using the Murine Genome U74Av2 oligonucleotide array (representing ∼6000 well-characterized genes and nearly 6000 expressed sequence tags). Comparative analysis of gene expression changes between different treatment groups of wild-type and nrf2-deficient mice facilitated identification of numerous genes regulated by Nrf2 including previously reported Nrf2-regulated genes such as NAD(P)H:quinone reductase (NQO1), glutathione S-transferase (GST), γ-glutamylcysteine synthetase (GCS), UDP-glucuronosyltransferases (UGT),epoxide hydrolase, as well as a number of new genes. Also identified were genes encoding for cellular NADPH regenerating enzymes (glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and malic enzyme), various xenobiotic metabolizing enzymes, antioxidants (glutathione peroxidase, glutathione reductase, ferritin, and haptaglobin), and biosynthetic enzymes of the glutathione and glucuronidation conjugation pathways. The data were validated by Northern blot analysis and enzyme assays of selected genes. This investigation expands the horizon of Nrf2-regulated genes, highlights the cross-talk between various metabolic pathways, and divulges the pivotal role played by Nrf2 in regulating cellular defenses against carcinogens and other toxins.

1,186 citations

Journal ArticleDOI
TL;DR: It is speculated that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity.
Abstract: 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) interconverts inactive cortisone and active cortisol. Although bidirectional, in vivo it is believed to function as a reductase generating active glucocorticoid at a prereceptor level, enhancing glucocorticoid receptor activation. In this review, we discuss both the genetic and enzymatic characterization of 11beta-HSD1, as well as describing its role in physiology and pathology in a tissue-specific manner. The molecular basis of cortisone reductase deficiency, the putative "11beta-HSD1 knockout state" in humans, has been defined and is caused by intronic mutations in HSD11B1 that decrease gene transcription together with mutations in hexose-6-phosphate dehydrogenase, an endoluminal enzyme that provides reduced nicotinamide-adenine dinucleotide phosphate as cofactor to 11beta-HSD1 to permit reductase activity. We speculate that hexose-6-phosphate dehydrogenase activity and therefore reduced nicotinamide-adenine dinucleotide phosphate supply may be crucial in determining the directionality of 11beta-HSD1 activity. Therapeutic inhibition of 11beta-HSD1 reductase activity in patients with obesity and the metabolic syndrome, as well as in glaucoma and osteoporosis, remains an exciting prospect.

989 citations

Book ChapterDOI
TL;DR: Over the 10 years, 11 beta-HSD has progressed from an enzyme merely involved in the peripheral metabolism of cortisol to a crucial pre-receptor signaling pathway in the analysis of corticosteroid hormone action.
Abstract: In mammalian tissues, at least two isozymes of 11 beta-hydroxysteroid dehydrogenase (11 beta-HSD) catalyze the interconversion of hormonally active C11-hydroxylated corticosteroids (cortisol, corticosterone) and their inactive C11-keto metabolites (cortisone, 11-dehydrocorticosterone). The type 1 and type 2 11 beta-HSD isozymes share only 14% homology and are separate gene products with different physiological roles, regulation, and tissue distribution. 11 beta-HSD2 is a high affinity NAD-dependent dehydrogenase that protects the mineralocorticoid receptor from glucocorticoid excess; mutations in the HSD11B2 gene explain an inherited form of hypertension, the syndrome of apparent mineralocorticoid excess in which cortisol acts as a potent mineralocorticoid. By contrast, 11 beta-HSD1 acts predominantly as a reductase in vivo, facilitating glucocorticoid hormone action in key target tissues such as liver and adipose tissue. Over the 10 years, 11 beta-HSD has progressed from an enzyme merely involved in the peripheral metabolism of cortisol to a crucial pre-receptor signaling pathway in the analysis of corticosteroid hormone action. This review details the enzymology, molecular biology, distribution, regulation, and function of the 11 beta-HSD isozymes and highlights the clinical consequences of altered enzyme expression.

720 citations

Journal ArticleDOI
TL;DR: The results demonstrate that the phenotype of stretched cardiocytes in this in vitro model closely mimics that of hemodynamic load-induced hypertrophy in vivo, and seems to be a suitable system with which to dissect the molecular mechanisms of load- inducedhypertrophy of cardiac muscle.

630 citations

Journal ArticleDOI
TL;DR: The degradation of vitamin’C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3‐diketo‐l‐gulonate, which is spontaneously degraded to oxalate, CO2 and l‐erythrulose, at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroASCorbate.
Abstract: Vitamin C, a reducing agent and antioxidant, is a cofactor in reactions catalyzed by Cu(+)-dependent monooxygenases and Fe(2+)-dependent dioxygenases. It is synthesized, in vertebrates having this capacity, from d-glucuronate. The latter is formed through direct hydrolysis of uridine diphosphate (UDP)-glucuronate by enzyme(s) bound to the endoplasmic reticulum membrane, sharing many properties with, and most likely identical to, UDP-glucuronosyltransferases. Non-glucuronidable xenobiotics (aminopyrine, metyrapone, chloretone and others) stimulate the enzymatic hydrolysis of UDP-glucuronate, accounting for their effect to increase vitamin C formation in vivo. Glucuronate is converted to l-gulonate by aldehyde reductase, an enzyme of the aldo-keto reductase superfamily. l-Gulonate is converted to l-gulonolactone by a lactonase identified as SMP30 or regucalcin, whose absence in mice leads to vitamin C deficiency. The last step in the pathway of vitamin C synthesis is the oxidation of l-gulonolactone to l-ascorbic acid by l-gulonolactone oxidase, an enzyme associated with the endoplasmic reticulum membrane and deficient in man, guinea pig and other species due to mutations in its gene. Another fate of glucuronate is its conversion to d-xylulose in a five-step pathway, the pentose pathway, involving identified oxidoreductases and an unknown decarboxylase. Semidehydroascorbate, a major oxidation product of vitamin C, is reconverted to ascorbate in the cytosol by cytochrome b(5) reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Transmembrane electron transfer systems using ascorbate or NADH as electron donors serve to reduce semidehydroascorbate present in neuroendocrine secretory vesicles and in the extracellular medium. Dehydroascorbate, the fully oxidized form of vitamin C, is reduced spontaneously by glutathione, as well as enzymatically in reactions using glutathione or NADPH. The degradation of vitamin C in mammals is initiated by the hydrolysis of dehydroascorbate to 2,3-diketo-l-gulonate, which is spontaneously degraded to oxalate, CO(2) and l-erythrulose. This is at variance with bacteria such as Escherichia coli, which have enzymatic degradation pathways for ascorbate and probably also dehydroascorbate.

594 citations