scispace - formally typeset
Search or ask a question
Author

Babak A. Parviz

Bio: Babak A. Parviz is an academic researcher from University of Washington. The author has contributed to research in topics: Contact lens & Microfabrication. The author has an hindex of 34, co-authored 110 publications receiving 4300 citations. Previous affiliations of Babak A. Parviz include Harvard University & University of Chicago.


Papers
More filters
Journal ArticleDOI
TL;DR: The design, construction, and testing of a contact lens with an integrated amperometric glucose sensor is reported, proposing the possibility of in situ human health monitoring simply by wearing a contact eye, with good linearity for the typical range of glucose concentrations in the tear film.

443 citations

Journal ArticleDOI
TL;DR: A noninvasive wireless sensor platform for continuous health monitoring that is wirelessly powered and achieves a measured glucose range of 0.05-1 mM with a sensitivity of 400 Hz/mM while consuming 3 μW from a regulated 1.2-V supply is presented.
Abstract: This paper presents a noninvasive wireless sensor platform for continuous health monitoring. The sensor system integrates a loop antenna, wireless sensor interface chip, and glucose sensor on a polymer substrate. The IC consists of power management, readout circuitry, wireless communication interface, LED driver, and energy storage capacitors in a 0.36-mm2 CMOS chip with no external components. The sensitivity of our glucose sensor is 0.18 μA·mm-2·mM-1. The system is wirelessly powered and achieves a measured glucose range of 0.05-1 mM with a sensitivity of 400 Hz/mM while consuming 3 μW from a regulated 1.2-V supply.

384 citations

Journal ArticleDOI
TL;DR: This paper describes an integrated approach to a miniaturized immunoassay called a “POCKET immunoASSay” (“PockET” is short for portable and cost-effective) that has the potential to be inexpensive and operable with minimal equipment and technical skills.
Abstract: The development of technology for use in resource-poor countries encounters a specific type of challenge not ordinarily faced in academic science: the technology must be inexpensive and it must work with minimal infrastructure. This challenge is particularly severe when the problems being solved are, by their nature, ones that require high-technology solutions. For these kinds of problems, the elegance of the solutions must lie in the use of science to guide the assembly of readily available components into a simple, workable, and well-integrated package. In this paper, we describe an integrated approach to a miniaturized immunoassay called a “POCKET immunoassay” (“POCKET” is short for portable and cost-effective). This immunoassay has, we believe, the potential to be inexpensive and operable with minimal equipment and technical skills, and shows an analytical performance approaching that of enzyme-linked immunosorbent assays (ELISA) performed in a bench-top format in clinical laboratories. A top priority for improving health in developing countries is technology for simple, affordable diagnosis of infectious diseases. Immunoassays such as ELISA are the most reliable and widely used methods for detecting antigens and antibodies, but they require expensive and bulky instruments for optical detection, hours of incubation for diffusionlimited reactions on the surface, and many steps of pipetting. 3] These constraints prevent the use of ELISA in settings that require low-cost or compact equipment, and in environments that lack electricity or trained personnel. One application with these requirements is the detection of infectious diseases in the field in developing countries; 4,5] other potential uses include point-of-care diagnostics by first responders and in health clinics, and detection of biological warfare agents in the field. Immunochromatographic assays (also known as “strip tests” and “lateral-flow

331 citations

Journal ArticleDOI
TL;DR: High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems.
Abstract: We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems.

279 citations

Journal ArticleDOI
01 Jul 2005-Small
TL;DR: This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining, compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micronachining processes.
Abstract: This manuscript describes the use of water-soluble polymers for use as sacrificial layers in surface micromachining. Water-soluble polymers have two attractive characteristics for this application: 1) They can be deposited conveniently by spin-coating, and the solvent removed at a low temperature (95-150 degrees C), and 2) the resulting layer can be dissolved in water; no corrosive reagents or organic solvents are required. This technique is therefore compatible with a number of fragile materials, such as organic polymers, metal oxides and metals-materials that might be damaged during typical surface micromachining processes. The carboxylic acid groups of one polymer-poly(acrylic acid) (PAA)-can be transformed by reversible ion-exchange from water-soluble (Na+ counterion) to water-insoluble (Ca2+ counterion) forms. The use of PAA and dextran polymers as sacrificial materials is a useful technique for the fabrication of microstructures: Examples include metallic structures formed by the electrodeposition of nickel, and freestanding, polymeric structures formed by photolithography.

278 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Nathaniel L. Rosi focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials and their roles in biodiagnostic screening for nucleic acids.
Abstract: In the last 10 years the field of molecular diagnostics has witnessed an explosion of interest in the use of nanomaterials in assays for gases, metal ions, and DNA and protein markers for many diseases. Intense research has been fueled by the need for practical, robust, and highly sensitive and selective detection agents that can address the deficiencies of conventional technologies. Chemists are playing an important role in designing and fabricating new materials for application in diagnostic assays. In certain cases assays based upon nanomaterials have offered significant advantages over conventional diagnostic systems with regard to assay sensitivity, selectivity, and practicality. Some of these new methods have recently been reviewed elsewhere with a focus on the materials themselves or as subclassifications in more generalized overviews of biological applications of nanomaterials.1-7 We intend to review some of the major advances and milestones in the field of detection systems based upon nanomaterials and their roles in biodiagnostic screening for nucleic acids, * To whom correspondence should be addressed. Phone: 847-4913907. Fax: 847-467-5123. E-mail: chadnano@northwestern.edu. Nathaniel L. Rosi earned his B.A. degree at Grinnell College (1999) and his Ph.D. degree from the University of Michigan (2003), where he studied the design, synthesis, and gas storage applications of metal−organic frameworks under the guidance of Professor Omar M. Yaghi. In 2003 he began postdoctoral studies as a member of Professor Mirkin’s group at Northwestern University. His current research focuses on the rational assembly of DNA-modified nanostructures into larger-scale materials.

4,308 citations

01 May 2005

2,648 citations

01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: This communication describes a simple method for patterning paper to create well-defined, millimeter-sized channels, comprising hydrophilic paper bounded by hydrophobic polymer, that will become the basis for low-cost, portable, and technically simple multiplexed bioassays.
Abstract: This communication describes a simple method for patterning paper to create well-defined, millimeter-sized channels, comprising hydrophilic paper bounded by hydrophobic polymer. We believe that this type of patterned paper will become the basis for low-cost, portable, and technically simple multiplexed bioassays. We demonstrate this capability by the simultaneous detection of glucose and protein in 5 μL of urine. The assay system is small, disposable, easy to use (and carry), and requires no external equipment, reagents, or power sources. We believe this kind of system is attractive for uses in less-industrialized countries, in the field, or as an inexpensive alternative to more advanced technologies already used in clinical settings.[1-4] The analysis of biological fluids is necessary for monitoring the health of populations,[2] but these measurements are difficult to implement in remote regions such as those found in less-industrialized countries, in emergency situations, or in home health-care settings.[3] Conventional laboratory instruments provide quantitative measurements of biological samples, but they are unsuitable for these situations since they are large, expensive, and require trained personnel and considerable volumes of biological samples.[2] Other bioassay platforms provide alternatives to more expensive instruments,[5-7] but the need remains for a platform that uses small volumes of sample and that is sufficiently inexpensive to be used widely for measuring samples from large populations. We believe that paper may serve as a particularly convenient platform for running bioassays in the remote situations locations. As a prototype for a mthod we believe to be particularly promosing, we patterned photoresist onto chromatography paper to form defined areas of hydrophilic paper separated by hydrophobic lines or “walls”; these patterns provide spatial control of biological fluids and enable fluid transport, without pumping, due to capillary action in the millimeter-sized channels produced. This method for patterning paper makes it possible to run multiple diagnostic assays on one strip of paper, while still using only small volumes of a single sample. In a fully developed technology, patterned photoresist would be replaced by an appropriate printing technology, but patterning paper with photoresist is: i) convenient for prototyping these devices, and ii) a useful new micropatterning technology in its own right. We patterned chromatography paper with SU-8 2010 photoresist as shown in Figure 1a and as described below: we soaked a 7.5-cm diameter piece of chromatography paper in 2 mL of SU-8 2010 for 30 s, spun it at 2000 rpm for 30 s, and then baked it at 95 °C for 5 min to remove the cyclopentanone in the SU-8 formula. We then exposed the photoresist and paper to 405 nm UV light (50 mW/cm2) for 10 s through a photo-mask (CAD/Art Services, Inc.) that was aligned using a mask aligner (OL-2 Mask Aligner, AB-M, Inc). After exposure, we baked the paper a second time at 95 °C for 5 min to cross-link the exposed portions of the resist. The unpolymerized photoresist was removed by soaking the paper in propylene glycol monomethyl ether acetate (PGMEA) (5 min), and by washing the pattern with propan-2-ol (3 × 10 mL). The paper was more hydrophobic after it was patterned, presumably due to residual resist bound to the paper, so we exposed the entire surface to an oxygen plasma for 10 s at 600 millitorr (SPI Plasma-Prep II, Structure Probe, Inc) to increase the hydrophilicity of the paper (Figures 2a and 2b). Figure 1 Chromatography paper patterned with photoresist. The darker lines are cured photoresist; the lighter areas are unexposed paper. (a) Patterned paper after absorbing 5 μL of Waterman red ink by capillary action. The central channel absorbs the sample ... Figure 2 Assays contaminated with (a) dirt, (b) plant pollen, and (c) graphite powder. The pictures were taken before and after running an artificial urine solution that contained 550 mM glucose and 75 μM BSA. The particulates do not move up the channels ... The patterned paper can be derivatized for biological assays by adding appropriate reagents to the test areas (Figures 1b and ​and2b).2b). In this communication, we demonstrate the method by detecting glucose and protein,[8] but the surface should be suitable for measuring many other analytes as well.[7] The glucose assay is based on the enzymatic oxidation of iodide to iodine,[9] where a color change from clear to brown is associated with the presence of glucose.[10] The protein assay is based on the color change of tetrabromophenol blue (TBPB) when it ionizes and binds to proteins;[11] a positive result in this case is indicated by a color change from yellow to blue. For the glucose assay, we spotted 0.3 μL of a 0.6 M solution of potassium iodide, followed by 0.3 μL of a 1:5 horseradish peroxidase/glucose oxidase solution (15 units of protein per mL of solution). For the protein assay, we spotted 0.3 μL of a 250-mM citrate buffer (pH 1.8) in a well separate from the glucose assay, and then layered 0.3 μL of a 3.3 mM solution of tetrabromophenol blue (TBPB) in 95% ethanol over the citrate buffer. The spotted reagents were allowed to air dry at room temperature. This pre-loaded paper gave consistent results for the protein assay regardless of storage temperature and time (when stored for 15 d both at 0 °C and at 23 °C, wrapped in aluminum foil). The glucose assay was sensitive to storage conditions, and showed decreased signal for assays run 24 h after spotting the reagents (when stored at 23 °C); when stored at 0 °C, however, the glucose assay was as sensitive after day 15 as it was on day 1. We measured artificial samples of glucose and protein in clinically relevant ranges (2.5-50 mM for glucose and 0.38-7.5 μM for bovine serum albumin (BSA))[12, 13] by dipping the bottom of each test strip in 5 μL of a pre-made test solution (Figure 2d). The fluid filled the entire pattern within ca. one minute, but the assays required 10-11 min for the paper to dry and for the color to fully develop.[14] In all cases, we observed color changes corresponding roughly in intensity to the amount of glucose and protein in the test samples, where the lowest concentrations define the lower limits to which these assays can be used (Figure 2e). For comparison, commercially-available dipsticks detect glucose at concentrations as low as 5 mM[7, 9] and protein as low as 0.75 μM;[6, 15] these limits indicate that these paper-based assays are comparable in sensitivity to commercial dipstick assays. Our assay format also allows for the measurement of multiple analytes. This paper-based assay is suitable for measuring multiple samples in parallel and in a relatively short period of time. For example, in one trial, one researcher was able to run 20 different samples (all with 550 mM glucose and 75 μM BSA) within 7.5 min (followed by another 10.5 min for the color to fully develop). An 18-min assay of this type—one capable of measuring two analytes in 20 different sample—may be efficient enough to use in high-throughput screens of larger sample pools. In the field, samples will not be measured under sterile conditions, and dust and dirt may contaminate the assays. The combination of paper and capillary action provides a mechanism for separating particulates from a biological fluid. As a demonstration, we purposely contaminated the artificial urine samples with quantities of dirt, plant pollen, and graphite powder at levels higher than we might expect to see in the samples in the field. These particulates do not move up the channels under the action of capillary wicking, and do not interfere with the assay (Figure 3). Paper strips have been used in biomedical assays for decades because they offer an inexpensive platform for colorimetric chemical testing.[1] Patterned paper has characteristics that lead to miniaturized assays that run by capillary action (e.g., without external pumping), with small volumes of fluids. These methods suggest a path for the development of simple, inexpensive, and portable diagnostic assays that may be useful in remote settings, and in particular, in less-industrialized countries where simple assays are becoming increasingly important for detecting disease and monitoring health,[16, 17], for environmental monitoring, in veterinary and agricultural practice and for other applications.

2,580 citations