scispace - formally typeset
Search or ask a question
Author

Badal Dey

Bio: Badal Dey is an academic researcher from Indian Statistical Institute. The author has contributed to research in topics: Population & Haplotype. The author has an hindex of 12, co-authored 23 publications receiving 997 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive statistical analysis of data on 58 DNA markers (mitochondrial [mt], Y-chromosomal, and autosomal) and sequence data of the mtHVS1 from a large number of ethnically diverse populations of India was performed by.
Abstract: We report a comprehensive statistical analysis of data on 58 DNA markers (mitochondrial [mt], Y-chromosomal, and autosomal) and sequence data of the mtHVS1 from a large number of ethnically diverse populations of India. Our results provide genomic evidence that (1) there is an underlying unity of female lineages in India, indicating that the initial number of female settlers may have been small; (2) the tribal and the caste populations are highly differentiated; (3) the Austro-Asiatic tribals are the earliest settlers in India, providing support to one anthropological hypothesis while refuting some others; (4) a major wave of humans entered India through the northeast; (5) the Tibeto-Burman tribals share considerable genetic commonalities with the Austro-Asiatic tribals, supporting the hypothesis that they may have shared a common habitat in southern China, but the two groups of tribals can be differentiated on the basis of Y-chromosomal haplotypes; (6) the Dravidian tribals were possibly widespread throughout India before the arrival of the Indo-European-speaking nomads, but retreated to southern India to avoid dominance; (7) formation of populations by fission that resulted in founder and drift effects have left their imprints on the genetic structures of contemporary populations; (8) the upper castes show closer genetic affinities with Central Asian populations, although those of southern India are more distant than those of northern India; (9) historical gene flow into India has contributed to a considerable obliteration of genetic histories of contemporary populations so that there is at present no clear congruence of genetic and geographical or sociocultural affinities.

369 citations

Journal ArticleDOI
TL;DR: This work has examined whether polymorphisms at the genetic loci of a drug and xenobiotic compound metabolizing enzyme are associated with the risk of ATD‐induced hepatotoxicity.
Abstract: Background: Pathogenesis and genetic factors influencing predisposition to antituberculosis drug (ATD)-induced hepatotoxicity are not clear. Polymorphism at the genetic locus of a drug and xenobiotic compound metabolizing enzyme, N-acetyltransferase type 2 (NAT2), is reported to be associated with the excess generation of toxic reactive metabolites. Polymorphisms at the glutathione S-transferase (GST) loci (GSTM1 and GSTT1) are involved in the detoxification of these toxic metabolites in the human body to a lesser extent. We have examined whether polymorphisms at these loci are associated with the risk of ATD-induced hepatotoxicity. Methods: In this case-control study, 33 pulmonary tuberculosis patients with ATD-induced hepatotoxicity and 33 pulmonary tuberculosis patients receiving ATD drugs without any evidence of hepatotoxicity were considered as cases and controls, respectively. Point mutations at NAT2 and homozygous ‘null’ mutations at GSTM1 and GSTT1 genes were looked into genomic DNA, isolated from peripheral blood mononuclear cells by using polymerase chain reaction (PCR). Results: The frequency of homozygous ‘null’ mutation at the GSTM1 gene was significantly higher among cases (n = 17, 52%) than controls (n = 8, 24%) (P < 0.05, relative risk 2.13, 95% CI: 1.25–3.10). Frequencies of mutations at GSTT1 and NAT2 genes did not differ significantly between cases and controls. Conclusion: Homozygous ‘null’ mutation at the GSTM1 gene might predispose an individual to ATD-induced hepatotoxicity.

180 citations

Journal ArticleDOI
TL;DR: DNA samples from 396 unrelated individuals belonging to 14 ethnic populations of India, inhabiting various geographical locations and occupying various positions in the socio-cultural hierarchy, were analysed in respect of 8 human-specific polymorphic insertion/deletion loci, found to be highly polymorphic in all populations.
Abstract: DNA samples from 396 unrelated individuals belonging to 14 ethnic populations of India, inhabiting various geographical locations and occupying various positions in the socio-cultural hierarchy, were analysed in respect of 8 human-specific polymorphic insertion/deletion loci. All loci, except Alu CD4, were found to be highly polymorphic in all populations. The levels of average heterozygosities were found to be very high in all populations and, in most populations, also higher than those predicted by the island model of population structure. The coefficient of gene differentiation among Indian populations was found to be higher than populations in most other global regions, except Africa. These results are discussed in the light of two possible scenarios of evolution of Indian populations in the broader context of human evolution.

114 citations

10 Nov 2000
TL;DR: This indicates that Indian populations were founded by a small number of females, possibly arriving on one of the early waves of out-of-Africa migration of modern humans; ethnic differentiationern Chinaoccurred subsequently through demographic expan-sions and geographic dispersal.
Abstract: Mitochondrial DNA (mtDNA) profiles of 23 ethnic populations of India drawn from diverse cultural, li n-guistic and geographical backgrounds are presented. There is exten sive sharing of a small number of mtDNA haplotypes, reconstructed on the basis of r es-triction fragment length polymorphisms, among the populations. This indicates that Indian populations were founded by a small number of females, possibly arriving on one of the early waves of out-of-Africa migration of modern humans; ethnic differentiationern Chinaoccurred subsequently through demographic expan-sions and geographic dispersal. The Asian-specific haplogroup M is in high frequency in most popula-tions, especially tribal populations and Dravidian pop u lations of southern India. Populations in which the frequencies of haplogroup M are relatively lower show higher frequencies of haplogroup U ; such pop u-lations are primarily caste popu lations of northern India. This finding is indica tive of a higher Caucasoid admixture in northern Indian populations. By exami n-ing the sharing of haplotypes between Indian and south -east Asian populations, we have provided evi-dence that south -east Asia was pe opled by two waves of migration, one originating in India and the other originating in southern China. These findings have been examined and interpreted in the light of infer-ences derived from previous genomic and historical stu d ies. I

62 citations

Journal ArticleDOI
TL;DR: It is speculated that Hb beta E in the Tibeto-Burman populations of Assam arose by an independent mutation which contributed to the high frequencies of HbBetaE in the Northeast Indian populations.
Abstract: Previous studies have reported a high incidence of hemoglobin E (HbE) in Northeast Indian populations. In the present study 10 endogamous populations of Assam belonging to two racial groups, Caucasoid and Mongoloid, were examined. The frequency of HbE gene (Hb βE) in the Caucasoid caste populations is around 0.1, whereas the gene is highly prevalent in the Mongoloid populations, frequencies ranging between 0.2 and 0.6. Predominance of Hb βE in the Tibeto-Burman speakers is contrary to observations made in Southeast Asia, where an association between Austro-Asiatic speakers and high prevalence of HbE exist. The highest occurrence of the gene in this area, which is on the far end of the proposed centre of distribution in Northern Kampuchea and Northeast Thailand, is also a deviation from the expected pattern of gene distribution. It is speculated that Hb βE in the Tibeto-Burman populations of Assam arose by an independent mutation which contributed to the high frequencies of Hb βE in the Northeast Indian populations.

52 citations


Cited by
More filters
Journal ArticleDOI
24 Sep 2009-Nature
TL;DR: It is predicted that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically and is higher in traditionally upper caste and Indo-European speakers.
Abstract: India has been underrepresented in genome-wide surveys of human variation. We analyse 25 diverse groups in India to provide strong evidence for two ancient populations, genetically divergent, that are ancestral to most Indians today. One, the 'Ancestral North Indians' (ANI), is genetically close to Middle Easterners, Central Asians, and Europeans, whereas the other, the 'Ancestral South Indians' (ASI), is as distinct from ANI and East Asians as they are from each other. By introducing methods that can estimate ancestry without accurate ancestral populations, we show that ANI ancestry ranges from 39-71% in most Indian groups, and is higher in traditionally upper caste and Indo-European speakers. Groups with only ASI ancestry may no longer exist in mainland India. However, the indigenous Andaman Islanders are unique in being ASI-related groups without ANI ancestry. Allele frequency differences between groups in India are larger than in Europe, reflecting strong founder effects whose signatures have been maintained for thousands of years owing to endogamy. We therefore predict that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically.

1,457 citations

Journal ArticleDOI
TL;DR: The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.
Abstract: Malaria is a major killer of children worldwide and the strongest known force for evolutionary selection in the recent history of the human genome. The past decade has seen growing evidence of ethnic differences in susceptibility to malaria and of the diverse genetic adaptations to malaria that have arisen in different populations: epidemiological confirmation of the hypotheses that G6PD deficiency, α + thalassemia, and hemoglobin C protect against malaria mortality; the application of novel haplotype-based techniques demonstrating that malaria-protective genes have been subject to recent positive selection; the first genetic linkage maps of resistance to malaria in experimental murine models; and a growing number of reported associations with resistance and susceptibility to human malaria, particularly in genes involved in immunity, inflammation, and cell adhesion. The challenge for the next decade is to build the global epidemiological infrastructure required for statistically robust genomewide association analysis, as a way of discovering novel mechanisms of protective immunity that can be used in the development of an effective malaria vaccine.

1,002 citations

Journal ArticleDOI
TL;DR: Systematic steps for prevention and management of TB DILI are recommended, including patient and regimen selection to optimize benefits over risks, effective staff and patient education, ready access to care for patients, good communication among providers, and judicious use of clinical and biochemical monitoring.
Abstract: Drug-induced liver injury (DILI) is a problem of increasing significance, but has been a long-standing concern in the treatment of tuberculosis (TB) infection. The liver has a central role in drug metabolism and detoxification, and is consequently vulnerable to injury. The pathogenesis and types of DILI are presented, ranging from hepatic adaptation to hepatocellular injury. Knowledge of the metabolism of anti-TB medications and of the mechanisms of TB DILI is incomplete. Understanding of TB DILI has been hampered by differences in study populations, definitions of hepatotoxicity, and monitoring and reporting practices. Available data regarding the incidence and severity of TB DILI overall, in selected demographic groups, and in those coinfected with HIV or hepatitis B or C virus are presented. Systematic steps for prevention and management of TB DILI are recommended. These include patient and regimen selection to optimize benefits over risks, effective staff and patient education, ready access to care for patients, good communication among providers, and judicious use of clinical and biochemical monitoring. During treatment of latent TB infection (LTBI) alanine aminotransferase (ALT) monitoring is recommended for those who chronically consume alcohol, take concomitant hepatotoxic drugs, have viral hepatitis or other preexisting liver disease or abnormal baseline ALT, have experienced prior isoniazid hepatitis, are pregnant or are within 3 months postpartum. During treatment of TB disease, in addition to these individuals, patients with HIV infection should have ALT monitoring. Some experts recommend biochemical monitoring for those older than 35 years. Treatment should be interrupted and, generally, a modified or alternative regimen used for those with ALT elevation more than three times the upper limit of normal (ULN) in the presence of hepatitis symptoms and/or jaundice, or five times the ULN in the absence of symptoms. Priorities for future studies to develop safer treatments for LTBI and for TB disease are presented.

944 citations

Journal ArticleDOI
TL;DR: The incidence, pathology and clinical features of antituberculosis drug‐induced hepatotoxicity, the metabolism and mechanisms of toxicity of isoniazid, rifampicin and pyrazinamide, and risk factors and management are reviewed.
Abstract: The cornerstone of tuberculosis management is a 6-month course of isoniazid, rifampicin, pyrazinamide and ethambutol. Compliance is crucial for curing tuberculosis. Adverse effects often negatively affect the compliance, because they frequently require a change of treatment, which may have negative consequences for treatment outcome. In this paper we review the incidence, pathology and clinical features of antituberculosis drug-induced hepatotoxicity, discuss the metabolism and mechanisms of toxicity of isoniazid, rifampicin and pyrazinamide, and describe risk factors and management of antituberculosis drug-induced hepatotoxicity. The reported incidence of antituberculosis drug-induced hepatotoxicity, the most serious and potentially fatal adverse reaction, varies between 2% and 28%. Risk factors are advanced age, female sex, slow acetylator status, malnutrition, HIV and pre-existent liver disease. Still, it is difficult to predict what patient will develop hepatotoxicity during tuberculosis treatment. The exact mechanism of antituberculosis drug-induced hepatotoxicity is unknown, but toxic metabolites are suggested to play a crucial role in the development, at least in the case of isoniazid. Priorities for future studies include basic studies to elucidate the mechanism of antituberculosis drug-induced hepatotoxicity, genetic risk factor studies and the development of shorter and safer tuberculosis drug regimens.

641 citations

Journal ArticleDOI
TL;DR: Overall, while there may be a small genetic contribution to school myopia, detectable under conditions of low environmental variation, environmental change appears to be the major factor increasing the prevalence of myopia around the world.

606 citations