scispace - formally typeset
Search or ask a question
Author

Baihua Wu

Bio: Baihua Wu is an academic researcher from Molecular Sciences Institute. The author has contributed to research in topics: Phase space & Space (mathematics). The author has an hindex of 1, co-authored 3 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified framework for constructing the mapping Hamiltonian on phase space for coupled F-state systems where the renowned Meyer-Miller Hamiltonian model is a special case is presented.
Abstract: ConspectusNonadiabatic dynamical processes are one of the most important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems, where the coupling between different electronic states is either inherent in the molecular structure or induced by the (intense) external field. The curse of dimensionality indicates the intractable exponential scaling of calculation effort with system size and restricts the implementation of "numerically exact" approaches for realistic large systems. The phase space formulation of quantum mechanics offers an important theoretical framework for constructing practical approximate trajectory-based methods for quantum dynamics. This Account reviews our recent progress in phase space mapping theory: a unified framework for constructing the mapping Hamiltonian on phase space for coupled F-state systems where the renowned Meyer-Miller Hamiltonian model is a special case, a general phase space formulation of quantum mechanics for nonadiabatic systems where the electronic degrees of freedom are mapped onto constraint space and the nuclear degrees of freedom are mapped onto infinite space, and an isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes. While the zero-point-energy parameter is conventionally assumed to be positive, we show that the constraint implied in the conventional Meyer-Miller mapping Hamiltonian requires that such a parameter can be negative as well and lies in (-1/F, +∞) for each electronic degree of freedom. More importantly, the zero-point-energy parameter should be interpreted as a special case of a commutator matrix in the comprehensive phase space mapping Hamiltonian for nonadiabatic systems. From the rigorous formulation of mapping phase space, we propose approximate but practical trajectory-based nonadiabatic dynamics methods. The applications to both gas phase and condensed phase problems include the spin-boson model for condensed phase dissipative two-state systems, the three-state photodissociation models, the seven-site model of the Fenna-Matthews-Olson monomer in photosynthesis of green sulfur bacteria, the strongly coupled molecular/atomic matter-optical cavity systems designed for controlling and manipulating chemical dynamical processes, and the Landauer model for a quantum dot state coupled with two electrodes. In these applications the overall performance of our phase space mapping dynamics approach is superior to two prevailing trajectory-based methods, Ehrenfest dynamics and fewest switches surface hopping.

16 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that a negative zero-point energy (ZPE) parameter could lead to a reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature.
Abstract: The celebrated Meyer-Miller mapping model has been a useful approach for generating practical trajectory-based nonadiabatic dynamics methods. It is generally assumed that the zero-point-energy (ZPE) parameter is positive. The constraint implied in the conventional Meyer-Miller mapping Hamiltonian for an F-electronic-state system actually requires γ∈(-1/F, ∞) for the ZPE parameter for each electronic degree of freedom. Both negative and positive values are possible for such a parameter. We first establish a rigorous formulation to construct exact mapping models in the Cartesian phase space when the constraint is applied. When nuclear dynamics is approximated by the linearized semiclassical initial value representation, a negative ZPE parameter could lead to reasonably good performance in describing dynamic behaviors in typical spin-boson models for condensed-phase two-state systems, even at challenging zero temperature.

13 citations

Journal ArticleDOI
TL;DR: In this article, a general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonians, involves a commutator variable matrix rather than the conventional zero-point-energy parameter.
Abstract: We show that a novel, general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonian, involves a commutator variable matrix rather than the conventional zero-point-energy parameter. In the exact mapping formulation on constraint space for phase space approaches for nonadiabatic dynamics, the general mapping Hamiltonian with commutator variables can be employed to generate approximate trajectory-based dynamics. Various benchmark model tests, which range from gas phase to condensed phase systems, suggest that the overall performance of the general mapping Hamiltonian is better than that of the conventional Meyer-Miller Hamiltonian.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a unified framework for constructing the mapping Hamiltonian on phase space for coupled F-state systems where the renowned Meyer-Miller Hamiltonian model is a special case is presented.
Abstract: ConspectusNonadiabatic dynamical processes are one of the most important quantum mechanical phenomena in chemical, materials, biological, and environmental molecular systems, where the coupling between different electronic states is either inherent in the molecular structure or induced by the (intense) external field. The curse of dimensionality indicates the intractable exponential scaling of calculation effort with system size and restricts the implementation of "numerically exact" approaches for realistic large systems. The phase space formulation of quantum mechanics offers an important theoretical framework for constructing practical approximate trajectory-based methods for quantum dynamics. This Account reviews our recent progress in phase space mapping theory: a unified framework for constructing the mapping Hamiltonian on phase space for coupled F-state systems where the renowned Meyer-Miller Hamiltonian model is a special case, a general phase space formulation of quantum mechanics for nonadiabatic systems where the electronic degrees of freedom are mapped onto constraint space and the nuclear degrees of freedom are mapped onto infinite space, and an isomorphism between the mapping phase space approach for nonadiabatic systems and that for nonequilibrium electron transport processes. While the zero-point-energy parameter is conventionally assumed to be positive, we show that the constraint implied in the conventional Meyer-Miller mapping Hamiltonian requires that such a parameter can be negative as well and lies in (-1/F, +∞) for each electronic degree of freedom. More importantly, the zero-point-energy parameter should be interpreted as a special case of a commutator matrix in the comprehensive phase space mapping Hamiltonian for nonadiabatic systems. From the rigorous formulation of mapping phase space, we propose approximate but practical trajectory-based nonadiabatic dynamics methods. The applications to both gas phase and condensed phase problems include the spin-boson model for condensed phase dissipative two-state systems, the three-state photodissociation models, the seven-site model of the Fenna-Matthews-Olson monomer in photosynthesis of green sulfur bacteria, the strongly coupled molecular/atomic matter-optical cavity systems designed for controlling and manipulating chemical dynamical processes, and the Landauer model for a quantum dot state coupled with two electrodes. In these applications the overall performance of our phase space mapping dynamics approach is superior to two prevailing trajectory-based methods, Ehrenfest dynamics and fewest switches surface hopping.

16 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the fundamental algorithms of TD-DMRG in the modern framework of matrix product states (MPS) and matrix product operators (MPO), including the basic algebra with respect to MPS and MPO, the novel time evolution schemes to propagate MPS, and the automated MPO construction algorithm to encode generic Hamiltonian.
Abstract: The simulations of spectroscopy and quantum dynamics are of vital importance to the understanding of the electronic processes in complex systems, including the radiative/radiationless electronic relaxation relevant for optical emission, charge/energy transfer in molecular aggregates related to carrier mobility in organic materials, as well as photovoltaic and thermoelectric conversion, light‐harvesting and spin transport, and so forth. In recent years, time‐dependent density matrix renormalization group (TD‐DMRG) has emerged as a general, numerically accurate and efficient method for high‐dimensional full‐quantum dynamics. This review will cover the fundamental algorithms of TD‐DMRG in the modern framework of matrix product states (MPS) and matrix product operators (MPO), including the basic algebra with respect to MPS and MPO, the novel time evolution schemes to propagate MPS, and the automated MPO construction algorithm to encode generic Hamiltonian. Most importantly, the proposed method can handle the mixed state density matrix at finite temperature, enabling quantum statistical description for molecular aggregates. We demonstrate the performance of TD‐DMRG by benchmarking with the current state‐of‐the‐art methods for simulating quantum dynamics of the spin‐boson model and the Frenkel–Holstein(–Peierls) model. As applications of TD‐DMRG to real‐world problems, we present theoretical investigations of carrier mobility and spectral function of rubrene crystal, and the radiationless decay rate of azulene with an anharmonic potential energy surface.

16 citations

Journal ArticleDOI
TL;DR: Proof-of-concept applications to realistic molecules demonstrate that machine learning phase space dynamics approaches are possible as well as competent in producing reasonably accurate results with a modest computation effort.
Abstract: Derived from phase space expressions of the quantum Liouville theorem, equilibrium continuity dynamics is a category of trajectory-based phase space dynamics methods, which satisfies the two critical fundamental criteria: conservation of the quantum Boltzmann distribution for the thermal equilibrium system and being exact for any thermal correlation functions (even of nonlinear operators) in the classical and harmonic limits. The effective force and effective mass matrix are important elements in the equations of motion of equilibrium continuity dynamics, where only the zeroth term of an exact series expansion of the phase space propagator is involved. We introduce a machine learning approach for fitting these elements in quantum phase space, leading to a much more efficient integration of the equations of motion. Proof-of-concept applications to realistic molecules demonstrate that machine learning phase space dynamics approaches are possible as well as competent in producing reasonably accurate results with a modest computation effort.

13 citations

Journal ArticleDOI
TL;DR: In this article, a general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonians, involves a commutator variable matrix rather than the conventional zero-point-energy parameter.
Abstract: We show that a novel, general phase space mapping Hamiltonian for nonadiabatic systems, which is reminiscent of the renowned Meyer-Miller mapping Hamiltonian, involves a commutator variable matrix rather than the conventional zero-point-energy parameter. In the exact mapping formulation on constraint space for phase space approaches for nonadiabatic dynamics, the general mapping Hamiltonian with commutator variables can be employed to generate approximate trajectory-based dynamics. Various benchmark model tests, which range from gas phase to condensed phase systems, suggest that the overall performance of the general mapping Hamiltonian is better than that of the conventional Meyer-Miller Hamiltonian.

12 citations

Journal ArticleDOI
TL;DR: In this article , an AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches.
Abstract: Exploring excitation energy transfer (EET) in light-harvesting complexes (LHCs) is essential for understanding the natural processes and design of highly-efficient photovoltaic devices. LHCs are open systems, where quantum effects may play a crucial role for almost perfect utilization of solar energy. Simulation of energy transfer with inclusion of quantum effects can be done within the framework of dissipative quantum dynamics (QD), which are computationally expensive. Thus, artificial intelligence (AI) offers itself as a tool for reducing the computational cost. Here we suggest AI-QD approach using AI to directly predict QD as a function of time and other parameters such as temperature, reorganization energy, etc., completely circumventing the need of recursive step-wise dynamics propagation in contrast to the traditional QD and alternative, recursive AI-based QD approaches. Our trajectory-learning AI-QD approach is able to predict the correct asymptotic behavior of QD at infinite time. We demonstrate AI-QD on seven-sites Fenna-Matthews-Olson (FMO) complex.

11 citations