scispace - formally typeset
Search or ask a question
Author

Baker Farangis

Other affiliations: University of Giessen
Bio: Baker Farangis is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Absorption spectroscopy & Extended X-ray absorption fine structure. The author has an hindex of 6, co-authored 6 publications receiving 510 citations. Previous affiliations of Baker Farangis include University of Giessen.

Papers
More filters
Journal ArticleDOI
TL;DR: A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported in this paper, where a thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction, and to protect the metal surface against oxidation.
Abstract: A new type of electrochromic mirror electrode based on reversible uptake of hydrogen in nickel magnesium alloy films is reported. Thin,magnesium-rich Ni-Mg films prepared on glass substrates by cosputtering from Ni and Mg targets are mirror-like in appearance and have low visible transmittance. Upon exposure to hydrogen gas or on reduction in alkaline electrolyte, the films take up hydrogen and become transparent. When hydrogen is removed, the mirror properties are recovered. The transition is believed to result from reversible formation of Mg2NiH4 and MgH2. A thin overlayer of palladium was found to enhance the kinetics of hydrogen insertion and extraction,and to protect the metal surface against oxidation.

336 citations

Journal ArticleDOI
TL;DR: In this article, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte.
Abstract: Thin, Pd-capped metallic films containing magnesium and first row transition metals (Mn, Fe, Co) switch reversibly from their initial reflecting state to visually transparent states when exposed to gaseous hydrogen or following cathodic polarization in an alkaline electrolyte. Reversion to the reflecting state is achieved by exposure to air or by anodic polarization. The films were prepared by co-sputtering from one magnesium target and one manganese, iron, or cobalt target. Both the dynamic optical switching range and the speed of the transition depend on the magnesium-transition metal ratio. Infrared spectra of films in the transparent, hydrided (deuterided) states support the presence of the intermetallic hydride phases Mg3MnH7, Mg2FeH6, and Mg2CoH5.

87 citations

Journal ArticleDOI
TL;DR: In this paper, the authors observed reversible mirror-to-transparent state switching in a variety of mixed metal thin films containing magnesium and first-row transition elements including Ni, Fe, Co, Mn, and Ti.

42 citations

Journal ArticleDOI
TL;DR: In this paper, structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions.
Abstract: Structural and electronic properties of co-sputtered Ni-Mg thin films with varying Ni to Mg ratio were studied by in situ x-ray absorption spectroscopy in the Ni L-edge and Mg K-edge regions. Codeposition of the metals led to increased disorder and decreased coordination around Ni and Mg compared to pure metal films. Exposure of the metallic films to hydrogen resulted in formation of hydrides and increased disorder. The presence of hydrogen as a near neighbor around Mg caused a drastic reduction in the intensities of multiple scattering resonances at higher energies. The optical switching behavior and changes in the x-ray spectra varied with Ni to Mg atomic ratio. Pure Mg films with Pd overlayers were converted to ${\mathrm{MgH}}_{2}:$ The H atoms occupy regular sites as in bulk ${\mathrm{MgH}}_{2}.$ Although optical switching was slow in the absence of Ni, the amount of ${\mathrm{H}}_{2}$ absorption was large. Incorporation of Ni in Mg films led to an increase in the speed of optical switching but decreased maximum transparency. Significant shifts in the Ni ${L}_{3}$ and ${L}_{2}$ peaks are consistent with strong interaction with hydrogen in the mixed films.

31 citations

Journal ArticleDOI
TL;DR: In this paper, changes in electronic structure and coordination of the magnesium and transition metal atoms during hydrogen absorption were studied using dynamic in situ transmission mode X-ray absorption spectroscopy.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a conceptual model for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal ammorphous state, is given for thin film deposition by sputtering, electronic band structure and ion diffusion.
Abstract: Electrochromic (EC) materials are able to change their optical properties, reversibly and persistently, by the application of an electrical voltage. These materials can be integrated in multilayer devices capable of modulating the optical transmittance between widely separated extrema. We first review the recent literature on inorganic EC materials and point out that today's research is focused on tungsten oxide (colouring under charge insertion) and nickel oxide (colouring under charge extraction). The properties of thin films of these materials are then discussed in detail with foci on recent results from two comprehensive investigations in the authors' laboratory. A logical exposition is obtained by covering, in sequence, structural features, thin film deposition (by sputtering), electronic band structure, and ion diffusion. A novel conceptual model is given for structural characteristics of amorphous W oxide films, based on notions of defects in the ideal amorphous state. It is also shown that the conduction band density of states is obtainable from simple electrochemical chronopotentiometry. Ion intercalation causes the charge-compensating electrons to enter localized states, implying that the optical absorption underlying the electrochromism can be described as ensuing from transitions between occupied and empty localized conduction band states. A fully quantitative theory of such transitions is not available, but the optical absorption can be modeled more phenomenologically as due to a superposition of transitions between different charge states of the W ions (6+, 5+, and 4+). The Ni oxide films were found to have a porous structure comprised of small grains. The data are consistent with EC coloration being a surface phenomenon, most likely confined to the outer parts of the grains. Initial electrochemical cycling was found to transform hydrated Ni oxide into hydroxide and oxy-hydroxide phases on the grain surfaces. Electrochromism in thus stabilized films is consistent with reversible changes between Ni hydroxide and oxy-hydroxide, in accordance with the Bode reaction scheme. An extension of this model is put forward to account for changes of NiO to Ni2O3. It was demonstrated that electrochromism is associated solely with proton transfer. Data on chemical diffusion coefficients are interpreted for polycrystalline W oxide and Ni oxide in terms of the lattice gas model with interaction. The later part of this review is of a more technological and applications oriented character and is based on the fact that EC devices with large optical modulation can be accomplished essentially by connecting W-oxide-based and Ni-oxide-based films through a layer serving as a pure ion conductor. Specifically, we treat methods to enhance the bleached-state transmittance by mixing the Ni oxide with other oxides characterized by wide band gaps, and we also discuss pre-assembly charge insertion and extraction by facile gas treatments of the films, as well as practical device manufacturing and device testing. Here the emphasis is on novel flexible polyester-foil-based devices. The final part deals with applications with emphasis on architectural “smart” windows capable of achieving improved indoor comfort jointly with significant energy savings due to lowered demands for space cooling. Eyewear applications are touched upon as well.

1,156 citations

Journal ArticleDOI
TL;DR: In this article, the hydrogen storage in metal hydrides with particular interest in Mg as it has potential to become one of the most promising storage materials, and the possibility of commercialization of Mg based alloys has been discussed.

922 citations

Journal ArticleDOI
TL;DR: Palladium has the potential to play a major role in virtually every aspect of the envisioned hydrogen economy, including hydrogen purification, storage, detection, and fuel cells as discussed by the authors.

398 citations

Journal ArticleDOI
TL;DR: In this paper, a large number of electrochromic devices for modulating transmittance and emittance are reviewed, both with and without self-powering by integrated solar cells.

321 citations

Journal ArticleDOI
Huaiyu Shao1, Gongbiao Xin2, Jie Zheng2, Xingguo Li2, Etsuo Akiba1 
TL;DR: In this paper, the authors reviewed the methods used by the authors to synthesize Mg-based hydrogen storage materials with nanostructure as well as some novel techniques from other researchers, and focus on how these nanotechnology processing methods could change kinetics and thermodynamics in Mgbased materials for hydrogen storage.

233 citations