scispace - formally typeset
Search or ask a question
Author

Balachander Krishnamurthy

Other affiliations: AT&T, Alcatel-Lucent
Bio: Balachander Krishnamurthy is an academic researcher from AT&T Labs. The author has contributed to research in topics: The Internet & Server. The author has an hindex of 61, co-authored 171 publications receiving 13973 citations. Previous affiliations of Balachander Krishnamurthy include AT&T & Alcatel-Lucent.


Papers
More filters
Proceedings ArticleDOI
18 Aug 2008
TL;DR: A detailed characterization of Twitter, an application that allows users to send short messages, is presented, which identifies distinct classes of Twitter users and their behaviors, geographic growth patterns and current size of the network.
Abstract: Web 2.0 has brought about several new applications that have enabled arbitrary subsets of users to communicate with each other on a social basis. Such communication increasingly happens not just on Facebook and MySpace but on several smaller network applications such as Twitter and Dodgeball. We present a detailed characterization of Twitter, an application that allows users to send short messages. We gathered three datasets (covering nearly 100,000 users) including constrained crawls of the Twitter network using two different methodologies, and a sampled collection from the publicly available timeline. We identify distinct classes of Twitter users and their behaviors, geographic growth patterns and current size of the network, and compare crawl results obtained under rate limiting constraints.

757 citations

Proceedings ArticleDOI
07 May 2002
TL;DR: An enhancement to CDNs is proposed that offers better protection to Web sites against flash events and trace-driven simulations are used to study the effect of the enhancement on CDNs and Web sites.
Abstract: The paper studies two types of events that often overload Web sites to a point when their services are degraded or disrupted entirely - flash events (FEs) and denial of service attacks (DoS). The former are created by legitimate requests and the latter contain malicious requests whose goal is to subvert the normal operation of the site. We study the properties of both types of events with a special attention to characteristics that distinguish the two. Identifying these characteristics allows a formulation of a strategy for Web sites to quickly discard malicious requests. We also show that some content distribution networks (CDNs) may not provide the desired level of protection to Web sites against flash events. We therefore propose an enhancement to CDNs that offers better protection and use trace-driven simulations to study the effect of our enhancement on CDNs and Web sites.

747 citations

01 Jan 2008
TL;DR: In this paper, the authors identify the primary differences leading to the properties of interest in 2.0 to be characterized and identify novel challenges due to the different structures of Web2.0 sites, richer methods of user interaction, new technologies and fundamentally different philosophy.
Abstract: Web 2.0 is a buzzword introduced in 2003/04 which is commonly used to encompass various novel phenomena on the World Wide Web. Although largely a marketing term, some of the key attributes associated with Web 2.0 include the growth of social networks, bi-directional communication, various ‘glue’ technologies, and significant diversity in content types. We are not aware of a technical comparison between Web 1.0 and 2.0. While most of Web 2.0 runs on the same substrate as 1.0, there are some key differences. We capture those differences and their implications for technical work in this space. Our goal is to identify the primary differences leading to the properties of interest in 2.0 to be characterized. We identify novel challenges due to the different structures of Web 2.0 sites, richer methods of user interaction, new technologies, and fundamentally different philosophy. Although a significant amount of past work can be reapplied, some critical thinking is needed for the networking community to analyze the challenges of this new and rapidly evolving environment.

566 citations

Proceedings ArticleDOI
27 Oct 2003
TL;DR: This work designs a variant of the sketch data structure, k-ary sketch, which uses a constant, small amount of memory, and has constant per-record update and reconstruction cost, and enables it to summarize traffic at various levels and detects significant changes by looking for flows with large forecast errors.
Abstract: Traffic anomalies such as failures and attacks are commonplace in today's network, and identifying them rapidly and accurately is critical for large network operators. The detection typically treats the traffic as a collection of flows that need to be examined for significant changes in traffic pattern (eg, volume, number of connections). However, as link speeds and the number of flows increase, keeping per-flow state is either too expensive or too slow. We propose building compact summaries of the traffic data using the notion of sketches. We have designed a variant of the sketch data structure, k-ary sketch, which uses a constant, small amount of memory, and has constant per-record update and reconstruction cost. Its linearity property enables us to summarize traffic at various levels. We then implement a variety of time series forecast models (ARIMA, Holt-Winters, etc.) on top of such summaries and detect significant changes by looking for flows with large forecast errors. We also present heuristics for automatically configuring the model parameters.Using a large amount of real Internet traffic data from an operational tier-1 ISP, we demonstrate that our sketch-based change detection method is highly accurate, and can be implemented at low computation and memory costs. Our preliminary results are promising and hint at the possibility of using our method as a building block for network anomaly detection and traffic measurement.

549 citations

Proceedings ArticleDOI
02 Nov 2011
TL;DR: A survey is deployed to 200 Facebook users recruited via Amazon Mechanical Turk, finding that 36% of content remains shared with the default privacy settings, and overall, privacy settings match users' expectations only 37% of the time, and when incorrect, almost always expose content to more users than expected.
Abstract: The sharing of personal data has emerged as a popular activity over online social networking sites like Facebook. As a result, the issue of online social network privacy has received significant attention in both the research literature and the mainstream media. Our overarching goal is to improve defaults and provide better tools for managing privacy, but we are limited by the fact that the full extent of the privacy problem remains unknown; there is little quantification of the incidence of incorrect privacy settings or the difficulty users face when managing their privacy.In this paper, we focus on measuring the disparity between the desired and actual privacy settings, quantifying the magnitude of the problem of managing privacy. We deploy a survey, implemented as a Facebook application, to 200 Facebook users recruited via Amazon Mechanical Turk. We find that 36% of content remains shared with the default privacy settings. We also find that, overall, privacy settings match users' expectations only 37% of the time, and when incorrect, almost always expose content to more users than expected. Finally, we explore how our results have potential to assist users in selecting appropriate privacy settings by examining the user-created friend lists. We find that these have significant correlation with the social network, suggesting that information from the social network may be helpful in implementing new tools for managing privacy.

545 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
TL;DR: A thorough exposition of community structure, or clustering, is attempted, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists.
Abstract: The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

9,057 citations

Journal ArticleDOI
TL;DR: A thorough exposition of the main elements of the clustering problem can be found in this paper, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.

8,432 citations

Proceedings ArticleDOI
26 Apr 2010
TL;DR: In this paper, the authors have crawled the entire Twittersphere and found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks.
Abstract: Twitter, a microblogging service less than three years old, commands more than 41 million users as of July 2009 and is growing fast. Twitter users tweet about any topic within the 140-character limit and follow others to receive their tweets. The goal of this paper is to study the topological characteristics of Twitter and its power as a new medium of information sharing.We have crawled the entire Twitter site and obtained 41.7 million user profiles, 1.47 billion social relations, 4,262 trending topics, and 106 million tweets. In its follower-following topology analysis we have found a non-power-law follower distribution, a short effective diameter, and low reciprocity, which all mark a deviation from known characteristics of human social networks [28]. In order to identify influentials on Twitter, we have ranked users by the number of followers and by PageRank and found two rankings to be similar. Ranking by retweets differs from the previous two rankings, indicating a gap in influence inferred from the number of followers and that from the popularity of one's tweets. We have analyzed the tweets of top trending topics and reported on their temporal behavior and user participation. We have classified the trending topics based on the active period and the tweets and show that the majority (over 85%) of topics are headline news or persistent news in nature. A closer look at retweets reveals that any retweeted tweet is to reach an average of 1,000 users no matter what the number of followers is of the original tweet. Once retweeted, a tweet gets retweeted almost instantly on next hops, signifying fast diffusion of information after the 1st retweet.To the best of our knowledge this work is the first quantitative study on the entire Twittersphere and information diffusion on it.

6,108 citations