scispace - formally typeset
Search or ask a question
Author

Balaji Narasimhan

Bio: Balaji Narasimhan is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Soil and Water Assessment Tool & SWAT model. The author has an hindex of 18, co-authored 56 publications receiving 1490 citations. Previous affiliations of Balaji Narasimhan include University of Manitoba & Texas A&M University.


Papers
More filters
Journal ArticleDOI
TL;DR: The wheat and sorghum crop yields were highly correlated with the ETDI and SMDI’s during the weeks of critical crop growth stages, indicating that the developed drought indices can be used for monitoring agricultural drought.

633 citations

Journal ArticleDOI
TL;DR: In this paper, a nonlinear method (NL-DisTrad) was developed and tested to disaggregate satellite-derived estimates of land surface temperature of MODIS (Moderate Resolution Imaging Spectrometer) with a resolution of 960m to the scale of Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) at 60m.

123 citations

Journal ArticleDOI
TL;DR: This study shows for the first time how land use and land cover classifications in cloud-prone monsoon regions with small-scale agriculture and multiple cropping patterns can be improved by combining Sentinel-1 and Sentinel-2 data.

116 citations

Journal ArticleDOI
TL;DR: Impacts of land use changes on the water balance components are assessed for the near future employing four different climate conditions (baseline, IPCC A1B, dry, wet, wet) using SLEUTH projections as a dynamic input to the hydrologic model SWAT.

91 citations

Journal ArticleDOI
TL;DR: In this article, a sliding window based daily correction factor derivation is proposed to build reliable daily rainfall data from climate models, which is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations.

85 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present guidelines for watershed model evaluation based on the review results and project-specific considerations, including single-event simulation, quality and quantity of measured data, model calibration procedure, evaluation time step, and project scope and magnitude.
Abstract: Watershed models are powerful tools for simulating the effect of watershed processes and management on soil and water resources. However, no comprehensive guidance is available to facilitate model evaluation in terms of the accuracy of simulated data compared to measured flow and constituent values. Thus, the objectives of this research were to: (1) determine recommended model evaluation techniques (statistical and graphical), (2) review reported ranges of values and corresponding performance ratings for the recommended statistics, and (3) establish guidelines for model evaluation based on the review results and project-specific considerations; all of these objectives focus on simulation of streamflow and transport of sediment and nutrients. These objectives were achieved with a thorough review of relevant literature on model application and recommended model evaluation methods. Based on this analysis, we recommend that three quantitative statistics, Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and ratio of the root mean square error to the standard deviation of measured data (RSR), in addition to the graphical techniques, be used in model evaluation. The following model evaluation performance ratings were established for each recommended statistic. In general, model simulation can be judged as satisfactory if NSE > 0.50 and RSR < 0.70, and if PBIAS + 25% for streamflow, PBIAS + 55% for sediment, and PBIAS + 70% for N and P. For PBIAS, constituent-specific performance ratings were determined based on uncertainty of measured data. Additional considerations related to model evaluation guidelines are also discussed. These considerations include: single-event simulation, quality and quantity of measured data, model calibration procedure, evaluation time step, and project scope and magnitude. A case study illustrating the application of the model evaluation guidelines is also provided.

9,386 citations

Journal ArticleDOI
TL;DR: In this article, a new climatic drought index, the standardized precipitation evapotranspiration index (SPEI), is proposed, which combines multiscalar character with the capacity to include the effects of temperature variability on drought assessment.
Abstract: The authors propose a new climatic drought index: the standardized precipitation evapotranspiration index (SPEI). The SPEI is based on precipitation and temperature data, and it has the advantage of combining multiscalar character with the capacity to include the effects of temperature variability on drought assessment. The procedure to calculate the index is detailed and involves a climatic water balance, the accumulation of deficit/surplus at different time scales, and adjustment to a log-logistic probability distribution. Mathematically, the SPEI is similar to the standardized precipitation index (SPI), but it includes the role of temperature. Because the SPEI is based on a water balance, it can be compared to the self-calibrated Palmer drought severity index (sc-PDSI). Time series of the three indices were compared for a set of observatories with different climate characteristics, located in different parts of the world. Under global warming conditions, only the sc-PDSI and SPEI identified an...

5,088 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a review of fundamental concepts of drought, classification of droughts, drought indices, historical Droughts using paleoclimatic studies, and the relation between DAs and large scale climate indices.

3,352 citations

Journal ArticleDOI
TL;DR: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the USDA Agricultural Research Service (ARS) and has gained international acceptance as a robust interdisciplinary watershed modeling tool.
Abstract: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the USDA Agricultural Research Service (ARS). SWAT has gained international acceptance as a robust interdisciplinary watershed modeling tool as evidenced by international SWAT conferences, hundreds of SWAT-related papers presented at numerous other scientific meetings, and dozens of articles published in peer-reviewed journals. The model has also been adopted as part of the U.S. Environmental Protection Agency (USEPA) Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) software package and is being used by many U.S. federal and state agencies, including the USDA within the Conservation Effects Assessment Project (CEAP). At present, over 250 peer-reviewed published articles have been identified that report SWAT applications, reviews of SWAT components, or other research that includes SWAT. Many of these peer-reviewed articles are summarized here according to relevant application categories such as streamflow calibration and related hydrologic analyses, climate change impacts on hydrology, pollutant load assessments, comparisons with other models, and sensitivity analyses and calibration techniques. Strengths and weaknesses of the model are presented, and recommended research needs for SWAT are also provided.

2,357 citations

Posted Content
TL;DR: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the U.S. Department of Agriculture (USDA), Agricultural Research Service.
Abstract: The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of modeling efforts conducted by the U.S. Department of Agriculture (USDA), Agricultural Research Service. SWAT has gained international acceptance as a robust interdisciplinary watershed modeling tool, as evidenced by international SWAT conferences, hundreds of SWAT-related papers presented at numerous scientific meetings, and dozens of articles published in peer-reviewed journals. The model has also been adopted as part of the U.S. Environmental Protection Agency's BASINS (Better Assessment Science Integrating Point & Nonpoint Sources) software package and is being used by many U.S. federal and state agencies, including the USDA within the Conservation Effects Assessment Project. At present, over 250 peer-reviewed, published articles have been identified that report SWAT applications, reviews of SWAT components, or other research that includes SWAT. Many of these peer-reviewed articles are summarized here according to relevant application categories such as streamflow calibration and related hydrologic analyses, climate change impacts on hydrology, pollutant load assessments, comparisons with other models, and sensitivity analyses and calibration techniques. Strengths and weaknesses of the model are presented, and recommended research needs for SWAT are provided.

2,274 citations