scispace - formally typeset
Search or ask a question
Author

Balbir Singh

Bio: Balbir Singh is an academic researcher from Universiti Malaysia Sarawak. The author has contributed to research in topics: Plasmodium knowlesi & Malaria. The author has an hindex of 40, co-authored 94 publications receiving 7184 citations. Previous affiliations of Balbir Singh include Liverpool School of Tropical Medicine & University of the Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the small subunit ribosomal RNA and the circumsporozoite protein genes were sequenced for eight isolates that had been microscopically identified as P knowlesi by microscopy.

1,100 citations

Journal ArticleDOI
TL;DR: In the absence of a specific routine diagnostic test for P. knowlesi malaria, patients who reside in or have traveled to Southeast Asia and who have received a "P. malariae" hyperparasitemia diagnosis by microscopy receive intensive management as appropriate for severe falciparum malaria.
Abstract: Background. Until recently, Plasmodium knowlesi malaria in humans was misdiagnosed as Plasmodium malariae malaria. The objectives of the present study were to determine the geographic distribution of P. knowlesi malaria in the human population in Malaysia and to investigate 4 suspected fatal cases. Methods. Sensitive and specific nested polymerase chain reaction was used to identify all Plasmodium species present in (1) blood samples obtained from 960 patients with malaria who were hospitalized in Sarawak, Malaysian Borneo, during 2001-2006; (2) 54 P. malariae archival blood films from 15 districts in Sabah, Malaysian Borneo (during 2003-2005), and 4 districts in Pahang, Peninsular Malaysia (during 2004-2005); and (3) 4 patients whose suspected cause of death was P. knowlesi malaria. For the 4 latter cases, available clinical and laboratory data were reviewed. Results. P. knowlesi DNA was detected in 266 (27.7%) of 960 of the samples from Sarawak hospitals, 41 (83.7%) of 49 from Sabah, and all 5 from Pahang. Only P. knowlesi DNA was detected in archival blood films from the 4 patients who died. All were hyperparasitemic and developed marked hepatorenal dysfunction. Conclusions. Human infection with P. knowlesi, commonly misidentified as the more benign P. malariae, are widely distributed across Malaysian Borneo and extend to Peninsular Malaysia. Because P. knowlesi replicates every 24 h, rapid diagnosis and prompt effective treatment are essential. In the absence of a specific routine diagnostic test for P. knowlesi malaria, we recommend that patients who reside in or have traveled to Southeast Asia and who have received a "P. malariae" hyperparasitemia diagnosis by microscopy receive intensive management as appropriate for severe falciparum malaria.

875 citations

Journal ArticleDOI
TL;DR: The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data when coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.
Abstract: A nested polymerase chain reaction (PCR) assay that uses Plasmodium genus-specific primers for the initial PCR (nest 1) amplification and either genus- or species-specific primers for the nest 2 amplifications was tested on laboratory and field samples. With in vitro cultured Plasmodium falciparum-infected blood samples, it was capable of detecting six parasites/microl of blood using DNA prepared from 25-microl blood spots on filter paper. The assay was evaluated on fingerprick blood samples collected on filter paper from 129 individuals living in a malaria-endemic area in Malaysia. Malaria prevalence by genus-specific nested PCR was 35.6% (46 of 129) compared with 28.7% (37 of 129) by microscopy. The nested PCR detected seven more malaria samples than microscopy in the first round of microscopic examination, malaria in three microscopically negative samples, six double infections identified as single infections by microscopy and one triple infection identified as a double infection by microscopy. The nested PCR assay described is a sensitive technique for collecting accurate malaria epidemiologic data. When coupled with simple blood spot sampling, it is particularly useful for screening communities in remote regions of the world.

543 citations

Journal ArticleDOI
TL;DR: The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis.
Abstract: Plasmodium knowlesi is a malaria parasite that is found in nature in long-tailed and pig-tailed macaques. Naturally acquired human infections were thought to be extremely rare until a large focus of human infections was reported in 2004 in Sarawak, Malaysian Borneo. Human infections have since been described throughout Southeast Asia, and P. knowlesi is now recognized as the fifth species of Plasmodium causing malaria in humans. The molecular, entomological, and epidemiological data indicate that human infections with P. knowlesi are not newly emergent and that knowlesi malaria is primarily a zoonosis. Human infections were undiagnosed until molecular detection methods that could distinguish P. knowlesi from the morphologically similar human malaria parasite P. malariae became available. P. knowlesi infections cause a spectrum of disease and are potentially fatal, but if detected early enough, infections in humans are readily treatable. In this review on knowlesi malaria, we describe the early studies on P. knowlesi and focus on the epidemiology, diagnosis, clinical aspects, and treatment of knowlesi malaria. We also discuss the gaps in our knowledge and the challenges that lie ahead in studying the epidemiology and pathogenesis of knowlesi malaria and in the prevention and control of this zoonotic infection.

399 citations

Journal ArticleDOI
TL;DR: Clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction-confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008 to study the presentation and course of patients with acute P. knowlesi infection.
Abstract: Background—Plasmodium knowlesi is increasingly recognized as a cause of human malaria in Southeast Asia but there are no detailed prospective clinical studies of naturally acquired infections. Methods—In a systematic study of the presentation and course of patients with acute P. knowlesi infection, clinical and laboratory data were collected from previously untreated, nonpregnant adults admitted to the hospital with polymerase chain reaction–confirmed acute malaria at Kapit Hospital (Sarawak, Malaysia) from July 2006 through February 2008. Results—Of 152 patients recruited, 107 (70%) had P. knowlesi infection, 24 (16%) had Plasmodium falciparum infection, and 21 (14%) had Plasmodium vivax. Patients with P. knowlesi infection presented with a nonspecific febrile illness, had a baseline median parasitemia value at hospital admission of 1387 parasites/μL (interquartile range, 6–222,570 parasites/μL), and all were thrombocytopenic at hospital admission or on the following day. Most (93.5%) of the patients with P. knowlesi infection had uncomplicated malaria that responded to chloroquine and primaquine treatment. Based on World Health Organization criteria for falciparum malaria, 7 patients with P. knowlesi infection (6.5%) had severe infections at hospital admission. The most frequent complication was respiratory distress, which was present at hospital admission in 4 patients and developed after admission in an additional 3 patients. P. knowlesi parasitemia at hospital admission was an independent determinant of respiratory distress, as were serum creatinine level, serum bilirubin, and platelet count at admission (P < .002 for each). Two patients with knowlesi malaria died, representing a case fatality rate of 1.8% (95% confidence interval, 0.2%–6.6%). Conclusions—Knowlesi malaria causes a wide spectrum of disease. Most cases are uncomplicated and respond promptly to treatment, but approximately 1 in 10 patients develop potentially fatal complications.

325 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: In this article, the small subunit ribosomal RNA and the circumsporozoite protein genes were sequenced for eight isolates that had been microscopically identified as P knowlesi by microscopy.

1,100 citations

Journal ArticleDOI
TL;DR: This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations.
Abstract: Naturally acquired immunity to falciparum malaria protects millions of people routinely exposed to Plasmodium falciparum infection from severe disease and death. There is no clear concept about how this protection works. There is no general agreement about the rate of onset of acquired immunity or what constitutes the key determinants of protection; much less is there a consensus regarding the mechanism(s) of protection. This review summarizes what is understood about naturally acquired and experimentally induced immunity against malaria with the help of evolving insights provided by biotechnology and places these insights in the context of historical, clinical, and epidemiological observations. We advocate that naturally acquired immunity should be appreciated as being virtually 100% effective against severe disease and death among heavily exposed adults. Even the immunity that occurs in exposed infants may exceed 90% effectiveness. The induction of an adult-like immune status among high-risk infants in sub-Saharan Africa would greatly diminish disease and death caused by P. falciparum. The mechanism of naturally acquired immunity that occurs among adults living in areas of hyper- to holoendemicity should be understood with a view toward duplicating such protection in infants and young children in areas of endemicity.

1,008 citations

Journal ArticleDOI
TL;DR: PlasmoDB as mentioned in this paper is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale.
Abstract: PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories--annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.

966 citations

01 Jan 2008
TL;DR: The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories—annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution.
Abstract: PlasmoDB (http://PlasmoDB.org) is a functional genomic database for Plasmodium spp. that provides a resource for data analysis and visualization in a gene-by-gene or genome-wide scale. PlasmoDB belongs to a family of genomic resources that are housed under the EuPathDB (http://EuPathDB.org) Bioinformatics Resource Center (BRC) umbrella. The latest release, PlasmoDB 5.5, contains numerous new data types from several broad categories—annotated genomes, evidence of transcription, proteomics evidence, protein function evidence, population biology and evolution. Data in PlasmoDB can be queried by selecting the data of interest from a query grid or drop down menus. Various results can then be combined with each other on the query history page. Search results can be downloaded with associated functional data and registered users can store their query history for future retrieval or analysis.

911 citations