scispace - formally typeset
Search or ask a question
Author

Balew A. Mekonnen

Other affiliations: Golder Associates
Bio: Balew A. Mekonnen is an academic researcher from University of Saskatchewan. The author has contributed to research in topics: Soil and Water Assessment Tool & SWAT model. The author has an hindex of 6, co-authored 9 publications receiving 129 citations. Previous affiliations of Balew A. Mekonnen include Golder Associates.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a probability distribution model of depression storage is introduced into the SWAT model to better handle landscape storage heterogeneity, and the integrated SWAT-PDLD model is tested using datasets for two prairie depression dominated watersheds in Canada.
Abstract: Modelling the hydrology of North American Prairie watersheds is complicated because of the existence of numerous landscape depressions that vary in storage capacity. The Soil and Water Assessment Tool (SWAT) is a widely applied model for long-term hydrological simulations in watersheds dominated by agricultural land uses. However, several studies show that the SWAT model has had limited success in handling prairie watersheds. In past works using SWAT, landscape depression storage heterogeneity has largely been neglected or lumped. In this study, a probability distributed model of depression storage is introduced into the SWAT model to better handle landscape storage heterogeneity. The work utilizes a probability density function to describe the spatial heterogeneity of the landscape depression storages that was developed from topographic characteristics. The integrated SWAT–PDLD model is tested using datasets for two prairie depression dominated watersheds in Canada: the Moose Jaw River watershed, Saskatchewan; and the Assiniboine River watershed, Saskatchewan. Simulation results were compared to observed streamflow using graphical and multiple statistical criterions. Representation of landscape depressions within SWAT using a probability distribution (SWAT–PDLD) provides improved estimations of streamflow for large prairie watersheds in comparison to results using a lumped, single storage approach. Copyright © 2016 John Wiley & Sons, Ltd.

44 citations

Journal ArticleDOI
TL;DR: In this article, the Soil and Water Assessment Tool (SWAT) is fused with artificial neural networks (ANNs), so that SWAT and ANN module deal with the contributing and non-contributing areas, respectively.
Abstract: Much of the prairie region in North America is characterized by relatively flat terrain with many depressions on the landscape. The hydrological response (runoff) is a combination of the conventional runoff from the contributing areas and the occasional overflow from the non-contributing areas (depressions). In this study, we promote the use of a hybrid modelling structure to predict runoff generation from prairie landscapes. More specifically, the Soil and Water Assessment Tool (SWAT) is fused with artificial neural networks (ANNs), so that SWAT and the ANN module deal with the contributing and non-contributing areas, respectively. A detailed experimental study is performed to select the best set of inputs, training algorithms and hidden neurons. The results obtained in this study suggest that the fusion of process-based and data-driven models can provide improved modelling capabilities for representing the highly nonlinear nature of the hydrological processes in prairie landscapes. Editor D. Kou...

36 citations

Journal ArticleDOI
TL;DR: In this article, a new version of the SWAT model called SWAT-PDLD, which combines SWAT and a Probability Distributed Landscape Depressions (PDLD) model, along with a seasonally varying soil erodibility factor, was applied to a Canadian prairie watershed (the Assiniboine River watershed, Saskatchewan, Canada).

21 citations

Journal ArticleDOI
TL;DR: In this article, the authors review potential methods and challenges in identifying critical source areas (CSAs) under Canadian conditions and highlight future research directions to address limitations of currently available methods.
Abstract: Non-point source (NPS) pollution is an important problem that has been threatening freshwater resources throughout the world. Best Management Practices (BMPs) can reduce NPS pollution delivery to receiving waters. For economic reasons, BMPs should be placed at critical source areas (CSAs), which are the areas contributing most of the NPS pollution. The CSAs are the areas in a watershed where source coincides with transport factors, such as runoff, erosion, subsurface flow, and channel processes. Methods ranging from simple index-based to detailed hydrologic and water quality (HWQ) models are being used to identify CSAs. However, application of these methods for Canadian watersheds remains challenging due to the diversified hydrological conditions, which are not fully incorporated into most existing methods. The aim of this work is to review potential methods and challenges in identifying CSAs under Canadian conditions. As such, this study: (a) reviews different methods for identifying CSAs; (b) discusses challenges and the current state of CSA identification; and (c) highlights future research directions to address limitations of currently available methods. It appears that applications of both simple index-based methods and detailed HWQ models to determine CSAs are limited in Canadian conditions. As no single method/model is perfect, it is recommended to develop a ‘Toolbox’ that can host a variety of methods to identify CSAs so as to allow flexibility to the end users on the choice of the methods.

18 citations

Journal ArticleDOI
19 Feb 2018-Water
TL;DR: In this paper, the authors applied the SWAT model for Northern Lake Erie Basin (NLEB; entire contributing basin to Lake Erie) to evaluate the effects of input data types on the simulation of hydrological processes and streamflows.
Abstract: In the last decade, Lake Erie, one of the great lakes bordering Canada and the USA has been under serious threat due to increased phosphorus levels originating from agricultural fields. Large scale watersheds contributing to Lake Erie from the USA side are being simulated using hydrological and water quality (H/WQ) models such as the Soil and Water Assessment Tool (SWAT) and the results from the model are being used by policy and decision makers to implement better management decisions to solve emerging phosphorus issues. On the Canadian side, modeling applications are limited to either small watersheds or one major watershed contributing to Lake Erie. To the best of our knowledge, no efforts have been made to model the entire contributing watersheds to Lake Erie from Canada. This study applied the SWAT model for Northern Lake Erie Basin (NLEB; entire contributing basin to Lake Erie). Various provincial, national and global inputs of weather, land use and soil at various resolutions was assessed to evaluate the effects of input data types on the simulation of hydrological processes and streamflows. Twelve scenarios were developed using the input combinations and selected scenarios were evaluated at selected locations along the Grand and Thames Rivers using model performance statistics, and graphical comparisons of time variable plots and flow duration curves (FDCs). In addition, various hydrological components such as surface runoff, water yield, and evapotranspiration were also evaluated. Global level coarse resolution weather and soil did not perform better compared to fine resolution national data. Interestingly, in the case of land use, global and national/provincial land use were close, however, fine resolution provincial data performed slightly better. This study found that interpolated weather data from Environment Canada climate station observations performed slightly better compared to the measured data and therefore could be a good choice to use for large-scale H/WQ modeling studies.

16 citations


Cited by
More filters
01 Dec 2004
TL;DR: In this article, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation, which involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models.
Abstract: Although uncertainty about structures of environmental models (conceptual uncertainty) is often acknowledged to be the main source of uncertainty in model predictions, it is rarely considered in environmental modelling. Rather, formal uncertainty analyses have traditionally focused on model parameters and input data as the principal source of uncertainty in model predictions. The traditional approach to model uncertainty analysis, which considers only a single conceptual model, may fail to adequately sample the relevant space of plausible conceptual models. As such, it is prone to modelling bias and underestimation of predictive uncertainty. In this paper we review a range of strategies for assessing structural uncertainties in models. The existing strategies fall into two categories depending on whether field data are available for the predicted variable of interest. To date, most research has focussed on situations where inferences on the accuracy of a model structure can be made directly on the basis of field data. This corresponds to a situation of ‘interpolation’. However, in many cases environmental models are used for ‘extrapolation’; that is, beyond the situation and the field data available for calibration. In the present paper, a framework is presented for assessing the predictive uncertainties of environmental models used for extrapolation. It involves the use of multiple conceptual models, assessment of their pedigree and reflection on the extent to which the sampled models adequately represent the space of plausible models. � 2005 Elsevier Ltd. All rights reserved.

417 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a Soil and Water Assessment Tool (SWAT) model with improved representations of GIW hydrologic processes for the approximately 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA.
Abstract: Geographically isolated wetlands (GIWs), defined as wetlands surrounded by uplands, provide an array of ecosystem goods and services. Within the United States, federal regulatory protections for GIWs are contingent, in part, on the quantification of their singular or aggregate effects on the hydrological, biological, or chemical integrity of waterways regulated by the Clean Water Act (CWA). However, limited tools are available to assess the downgradient effects of GIWs. We constructed a Soil and Water Assessment Tool (SWAT) model with improved representations of GIW hydrologic processes for the approximately 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. We then executed a series of novel modifications on the Pipestem Creek SWAT model. We (1) redefined the model's hydrologic response unit spatial boundaries to conform to mapped GIWs and associated watershed boundaries, (2) constructed a series of new model input files to direct the simulation of GIW fill–spill hydrology and upland flows to GIWs, and (3) modified the model source code to facilitate use of the new SWAT input files and improve GIW water balance simulations. We then calibrated and verified our modified SWAT model at a daily time step from 2009 through 2013. Simulation results indicated good predictive power (the maximum Nash–Sutcliffe Efficiency statistic was 0.86) and an acceptable range of uncertainty (measured using the Sequential Uncertainty Fitting v.2 uncertainty statistics). Simulation results additionally indicated good model performance with respect to GIW water balance simulations based on literature-based descriptions of regional GIW hydrologic behaviour. Our modified SWAT model represents a critical step in advancing scientific understandings of the watershed-scale hydrologic effects of GIWs and provides a novel method for future assessments in different watersheds and physiographic regions. Copyright © 2016 John Wiley & Sons, Ltd.

84 citations

Journal ArticleDOI
TL;DR: This paper highlights the potential for a new era of collaboration between data-driven and more physically-based modellers that should improve the ability to model and manage socio-hydrologic systems.
Abstract: “Panta Rhei – Everything Flows” is the science plan for the International Association of Hydrological Sciences scientific decade 2013–2023. It is founded on the need for improved understanding of the mutual, two-way interactions occurring at the interface of hydrology and society, and their role in influencing future hydrologic system change. It calls for strategic research effort focused on the delivery of coupled, socio-hydrologic models. In this paper we explore and synthesize opportunities and challenges that socio-hydrology presents for data-driven modelling. We highlight the potential for a new era of collaboration between data-driven and more physically-based modellers that should improve our ability to model and manage socio-hydrologic systems. Crucially, we approach data-driven, conceptual and physical modelling paradigms as being complementary rather than competing, positioning them along a continuum of modelling approaches that reflects the relative extent to which hypotheses and/or dat...

82 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL), have created tremendous excitement and opportunities in the earth and environmental sciences communitie...
Abstract: Recent breakthroughs in artificial intelligence (AI), and particularly in deep learning (DL), have created tremendous excitement and opportunities in the earth and environmental sciences communitie...

64 citations