scispace - formally typeset
Search or ask a question
Author

邦雄 井上

Bio: 邦雄 井上 is an academic researcher. The author has contributed to research in topics: Super-Kamiokande & Solar neutrino. The author has an hindex of 8, co-authored 8 publications receiving 259 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: The identity of dark matter is a question of central importance in both astrophysics and particle physics as discussed by the authors, and recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of the dark matter.
Abstract: The identity of dark matter is a question of central importance in both astrophysics and particle physics. In the past, the leading particle candidates were cold and collisionless, and typically predicted missing energy signals at particle colliders. However, recent progress has greatly expanded the list of well-motivated candidates and the possible signatures of dark matter. This review begins with a brief summary of the standard model of particle physics and its outstanding problems. We then discuss several dark matter candidates motivated by these problems, including WIMPs, superWIMPs, light gravitinos, hidden dark matter, sterile neutrinos, and axions. For each of these, we critically examine the particle physics motivations and present their expected production mechanisms, basic properties, and implications for direct and indirect detection, particle colliders, and astrophysical observations. Upcoming experiments will discover or exclude many of these candidates, and progress may open up an era of unprecedented synergy between studies of the largest and smallest observable length scales.

976 citations

Journal ArticleDOI
TL;DR: In this paper, a global analysis of the neutrino oscillation data available as of fall 2018 in the framework of three massive mixed neutrinos with the goal at determining the ranges of allowed values for the six relevant parameters.
Abstract: We present the results of a global analysis of the neutrino oscillation data available as of fall 2018 in the framework of three massive mixed neutrinos with the goal at determining the ranges of allowed values for the six relevant parameters. We describe the complementarity and quantify the tensions among the results of the different data samples contributing to the determination of each parameter. We also show how those vary when combining our global likelihood with the χ2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis in the same framework. The best fit of the analysis is for the normal mass ordering with inverted ordering being disfavoured with a Δχ2 = 4.7 (9.3) without (with) SK-atm. We find a preference for the second octant of θ23, disfavouring the first octant with Δχ2 = 4.4 (6.0) without (with) SK-atm. The best fit for the complex phase is δCP = 215° with CP conservation being allowed at Δχ2 = 1.5 (1.8). As a byproduct we quantify the correlated ranges for the laboratory observables sensitive to the absolute neutrino mass scale in beta decay, $$ {m}_{ u_e} $$ , and neutrino-less double beta decay, mee, and the total mass of the neutrinos, Σ, which is most relevant in Cosmology.

860 citations

Journal ArticleDOI
TL;DR: In this paper, a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrinos oscillations was performed and the allowed ranges of the six oscillation parameters were presented.
Abstract: We perform a combined fit to global neutrino oscillation data available as of fall 2016 in the scenario of three-neutrino oscillations and present updated allowed ranges of the six oscillation parameters. We discuss the differences arising between the consistent combination of the data samples from accelerator and reactor experiments compared to partial combinations. We quantify the confidence in the determination of the less precisely known parameters θ 23, δ CP, and the neutrino mass ordering by performing a Monte Carlo study of the long baseline accelerator and reactor data. We find that the sensitivity to the mass ordering and the θ 23 octant is below 1σ. Maximal θ 23 mixing is allowed at slightly more than 90% CL. The best fit for the CP violating phase is around 270°, CP conservation is allowed at slightly above 1σ, and values of δ CP ≃ 90° are disfavored at around 99% CL for normal ordering and higher CL for inverted ordering.

730 citations

Journal ArticleDOI
TL;DR: In this paper, a combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrinos mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6σ level.
Abstract: Our herein described combined analysis of the latest neutrino oscillation data presented at the Neutrino2020 conference shows that previous hints for the neutrino mass ordering have significantly decreased, and normal ordering (NO) is favored only at the 1.6σ level. Combined with the χ2 map provided by Super-Kamiokande for their atmospheric neutrino data analysis the hint for NO is at 2.7σ. The CP conserving value δCP = 180° is within 0.6σ of the global best fit point. Only if we restrict to inverted mass ordering, CP violation is favored at the ∼ 3σ level. We discuss the origin of these results — which are driven by the new data from the T2K and NOvA long-baseline experiments —, and the relevance of the LBL-reactor oscillation frequency complementarity. The previous 2.2σ tension in ∆m221 preferred by KamLAND and solar experiments is also reduced to the 1.1σ level after the inclusion of the latest Super-Kamiokande solar neutrino results. Finally we present updated allowed ranges for the oscillation parameters and for the leptonic Jarlskog determinant from the global analysis.

635 citations

Journal ArticleDOI
TL;DR: In this paper, a global analysis of solar, atmospheric, reactor, and accelerator neutrino data in the framework of three-neutrino oscillations based on data available in summer 2014 is presented.
Abstract: We present a global analysis of solar, atmospheric, reactor and accelerator neutrino data in the framework of three-neutrino oscillations based on data available in summer 2014. We provide the allowed ranges of the six oscillation parameters and show that their determination is stable with respect to uncertainties related to reactor neutrino and solar neutrino flux predictions. We find that the maximal possible value of the Jarlskog invariant in the lepton sector is 0.033 ±0.010 (±0.027) at the 1σ (3σ) level and we use leptonic unitarity triangles to illustrate the ability of global oscillation data to obtain information on CP violation. We discuss “tendencies and tensions” of the global fit related to the octant of θ 23 as well as the CP violating phase δ CP. The favored values of δ CP are around 3π/2 while values around π/2 are disfavored at about Δχ2 ≃6. We comment on the non-trivial task to assign a confidence level to this Δχ 2 value by performing a Monte Carlo study of T2K data.

613 citations