scispace - formally typeset
Search or ask a question
Author

Bani Kanta Sarma

Bio: Bani Kanta Sarma is an academic researcher from Jawaharlal Nehru Centre for Advanced Scientific Research. The author has contributed to research in topics: Amide & Hydrogen bond. The author has an hindex of 12, co-authored 26 publications receiving 982 citations. Previous affiliations of Bani Kanta Sarma include Shiv Nadar University & Indian Institute of Science.

Papers
More filters
Journal ArticleDOI
TL;DR: It is proved that the use of thiol having an intramolecularly coordinating group would enhance the biological activity of ebselen and other organoselenium compounds.
Abstract: The factors that are responsible for the relatively low glutathione peroxidase (GPx)-like antioxidant activity of organoselenium compounds such as ebselen (1, 2-phenyl-1,2-benzisoselenazol-3(2H)-one) in the reduction of hydroperoxides with aromatic thiols such as benzenethiol and 4-methylbenzenethiol as cosubstrates are described. Experimental and theoretical investigations reveal that the relatively poor GPx-like catalytic activity of organoselenium compounds is due to the undesired thiol exchange reactions that take place at the selenium center in the selenenyl sulfide intermediate. This study suggests that any substituent that is capable of enhancing the nucleophilic attack of thiol at sulfur in the selenenyl sulfide state would enhance the antioxidant potency of organoselenium compounds such as ebselen. It is proved that the use of thiol having an intramolecularly coordinating group would enhance the biological activity of ebselen and other organoselenium compounds. The presence of strong S···N or S···O interactions in the selenenyl sulfide state can modulate the attack of an incoming nucleophile (thiol) at the sulfur atom of the -Se-S- bridge and enhance the GPx activity by reducing the barrier for the formation of the active species selenol.

249 citations

Journal ArticleDOI
TL;DR: A revised mechanism that accounts for the glutathione peroxidase (GPx)-like catalytic activity of the organoselenium compound ebselen is described and DFT calculations show that the cyclization of selenenic acids to the corresponding selenenyl amides is more favored than that of sulfenic acidsto the corresponding sulfenylAmides.
Abstract: A revised mechanism that accounts for the glutathione peroxidase (GPx)-like catalytic activity of the organoselenium compound ebselen is described. It is shown that the reaction of ebselen with H(2)O(2) yields seleninic acid as the only oxidized product. The X-ray crystal structure of the seleninic acid shows that the selenium atom is involved in a noncovalent interaction with the carbonyl oxygen atom. In the presence of excess thiol, the Se--N bond in ebselen is readily cleaved by the thiol to produce the corresponding selenenyl sulfide. The selenenyl sulfide thus produced undergoes a disproportionation in the presence of H(2)O(2) to produce the diselenide, which upon reaction with H(2)O(2), produces a mixture of selenenic and seleninic acids. The addition of thiol to the mixture containing selenenic and seleninic acids leads to the formation of the selenenyl sulfide. When the concentration of the thiol is relatively low in the reaction mixture, the selenenic acid undergoes a rapid cyclization to produce ebselen. The seleninic acid, on the other hand, reacts with the diselenide to produce ebselen as the final product. DFT calculations show that the cyclization of selenenic acids to the corresponding selenenyl amides is more favored than that of sulfenic acids to the corresponding sulfenyl amides. This indicates that the regeneration of ebselen under a variety of conditions protects the selenium moiety from irreversible inactivation, which may be responsible for the biological activities of ebselen.

181 citations

Journal ArticleDOI
TL;DR: Tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between theTelluride and telluroxide intermediate.
Abstract: The first examples of stable spirodiazaselenurane and spirodiazatellurane were synthesized by oxidative spirocyclization of the corresponding diaryl selenide and telluride and were structurally characterized. X-ray crystal structures of the spirodiazaselenurane and spirodiazatellurane suggest that the structures are distorted trigonal bipyramidal (TBP) with the electronegative nitrogen atoms occupying the apical positions and two carbon atoms and the lone pair of Se/Te occupying the equatorial positions. Interestingly, the spirodiazatellurane underwent spontaneous chiral resolution during crystallization, and the absolute configurations of its enantiomers were confirmed by single-crystal X-ray analyses. A detailed mechanistic study indicates that the cyclization to spirodiazaselenurane and spirodiazatellurane occurs via selenoxide and telluroxide intermediates. The chalcogenoxides cyclize to the corresponding spiro compounds in a stepwise manner via the involvement of hydroxyl chalcogenurane intermediates, and the activation energy for the spirocyclization reaction decreases in the order S > Se > Te. In addition to the synthesis, characterization, and mechanism of cyclization, the glutathione peroxidase (GPx) mimetic activity of the newly synthesized compounds was evaluated. These studies suggest that the tellurium compounds are more effective as GPx mimics than their selenium counterparts due to the fast oxidation of the tellurium center in the presence of peroxide and the involvement of an efficient redox cycle between the telluride and telluroxide intermediate.

160 citations

Journal ArticleDOI
TL;DR: The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.
Abstract: The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.

112 citations

Journal ArticleDOI
TL;DR: The chemical and biochemical route to the synthesis of the 21st amino acid in living systems, selenocysteine, is described and the incorporation of this rare amino acid residue into proteins is described with emphasis on the role of monoselenophosphate as selenium source.
Abstract: The chemical and biochemical route to the synthesis of the 21st amino acid in living systems, selenocysteine, is described. The incorporation of this rare amino acid residue into proteins is described with emphasis on the role of monoselenophosphate as selenium source. The role of selenocysteine moiety in natural mammalian enzymes such as glutathione peroxidase (GPx), iodothyronine deiodinase (ID) and thioredoxin reductase (TrxR) is highlighted and the effect of other amino acid residues located in close proximity to selenocysteine is described. It is evident from various studies that two amino acid residues, tryptophan and glutamine, appear in identical positions in all known members of the GPx family. According to the three-dimensional structure established for bovine GPx, these residues could constitute a catalytic triad in which the selenol group of the selenocysteine is both stabilized and activated by hydrogen bonding with the imino group of the tryptophan (Trp) residue and with the amido group of the glutamine (Gln) residue. The ID enzymes, on the other hand, do not possess any Trp or Gln residues in close proximity to selenium, but contain several histidine residues, which may play important roles in the catalysis. The TrxR enzymes also possess some basic histidines, but the most important amino acid residues are the cysteines which constitute the internal cofactor systems along with the catalytically active selenocysteine. The catalytic activity and substrate specificity of all three selenoenzymes are described. The reactivity of selenocysteine residues in selenoenzymes towards metal-based drugs such as goldthioglucose is also described.

80 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review will focus exclusively on cysteine, whose identity as cellular target or “sensor” of reactive intermediates is most prevalent and established and which results in a range of sulfur-containing products, not just disulfide bridges, as typically presented in biochemistry textbooks.
Abstract: Reactive oxygen, nitrogen, and sulfur species, referred to as ROS, RNS, and RSS, respectively, are produced during normal cell function and in response to various stimuli. An imbalance in the metabolism of these reactive intermediates results in the phenomenon known as oxidative stress. If left unchecked, oxidative molecules can inflict damage on all classes of biological macromolecules and eventually lead to cell death. Indeed, sustained elevated levels of reactive species have been implicated in the etiology (e.g., atherosclerosis, hypertension, diabetes) or the progression (e.g., stroke, cancer, and neurodegenerative disorders) of a number of human diseases.1 Over the past several decades, however, a new paradigm has emerged in which the aforementioned species have also been shown to function as targeted, intracellular second messengers with regulatory roles in an array of physiological processes.2 Against this backdrop, it is not surprising that considerable ongoing efforts are aimed at elucidating the role that these reactive intermediates play in health and disease. Site-specific, covalent modification of proteins represents a prominent molecular mechanism for transforming an oxidant signal into a biological response. Amino acids that are candidates for reversible modification include cysteines whose thiol (i.e., sulfhydryl) side chain is deprotonated at physiological pH, which is an important attribute for enhancing reactivity. While reactive species can modify other amino acids (e.g., histidine, methionine, tryptophan, and tyrosine), this Review will focus exclusively on cysteine, whose identity as cellular target or “sensor” of reactive intermediates is most prevalent and established.3 Oxidation of thiols results in a range of sulfur-containing products, not just disulfide bridges, as typically presented in biochemistry textbooks. An overview of the most relevant forms of oxidized sulfur species found in vivo is presented in Chart 1. Open in a separate window Chart 1 Biologically Relevant Cysteine Chemotypesa aRed, irreversible modifications. Green, unique enzyme intermediates. Note: Additional modifications can form as enzyme intermediates including thiyl radicals, disulfides, and persulfides.

899 citations

Journal ArticleDOI
TL;DR: A chemical framework broadens the understanding of the functional roles that specific cysteine oxidation states can play and facilitates the development of mechanistic proposals, which can be tested in both biochemical and cellular studies.

594 citations

Journal ArticleDOI
TL;DR: This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link betweenselenium intake, selenoproteins functionality and beneficial health effects.
Abstract: Despite its very low level in humans, selenium plays an important and unique role among the (semi)metal trace essential elements because it is the only one for which incorporation into proteins is genetically encoded, as the constitutive part of the 21st amino acid, selenocysteine. Twenty-five selenoproteins have been identified so far in the human proteome. The biological functions of some of them are still unknown, whereas for others there is evidence for a role in antioxidant defence, redox state regulation and a wide variety of specific metabolic pathways. In relation to these functions, the selenoproteins emerged in recent years as possible biomarkers of several diseases such as diabetes and several forms of cancer. Comprehension of the selenium biochemical pathways under normal physiological conditions is therefore an important requisite to elucidate its preventing/therapeutic effect for human diseases. This review summarizes the most recent findings on the biochemistry of active selenium species in humans, and addresses the latest evidence on the link between selenium intake, selenoproteins functionality and beneficial health effects. Primary emphasis is given to the interpretation of biochemical mechanisms rather than epidemiological/observational data. In this context, the review includes the following sections: (1) brief introduction; (2) general nutritional aspects of selenium; (3) global view of selenium metabolic routes; (4) detailed characterization of all human selenoproteins; (5) detailed discussion of the relation between selenoproteins and a variety of human diseases.

544 citations

Journal ArticleDOI
TL;DR: A near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO(-)/GSH levels in cells and in vivo, and would provide a significant advance on the redox events involved in the cellular redox regulation.
Abstract: The redox homeostasis between peroxynitrite and glutathione is closely associated with the physiological and pathological processes, e.g. vascular tissue prolonged relaxation and smooth muscle preparations, attenuation hepatic necrosis, and activation matrix metalloproteinase-2. We report a near-infrared fluorescent probe based on heptamethine cyanine, which integrates with telluroenzyme mimics for monitoring the changes of ONOO–/GSH levels in cells and in vivo. The probe can reversibly respond to ONOO– and GSH and exhibits high selectivity, sensitivity, and mitochondrial target. It is successfully applied to visualize the changes of redox cycles during the outbreak of ONOO– and the antioxidant GSH repair in cells and animal. The probe would provide a significant advance on the redox events involved in the cellular redox regulation.

526 citations

Journal ArticleDOI
TL;DR: This article reviewed principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms.
Abstract: Convincing concepts of redox control of gene transcription have been worked out for prokaryotes and lower eukaryotes, whereas the knowledge on complex mammalian systems still resembles a patchwork of poorly connected findings. The article, therefore, reviews principles of redox regulation with special emphasis on chemical feasibility, kinetic requirements, specificity, and physiological context, taking well investigated mammalian transcription factor systems, nuclear transcription factor of bone marrow-derived lymphocytes (NF-κB), and kelch-like ECH-associated protein-1 (Keap1)/Nrf2, as paradigms. Major conclusions are that (i) direct signaling by free radicals is restricted to O2•− and •NO and can be excluded for fast reacting radicals such as •OH, •OR, or Cl•; (ii) oxidant signals are H2O2, enzymatically generated lipid hydroperoxides, and peroxynitrite; (iii) free radical damage is sensed via generation of Michael acceptors; (iv) protein thiol oxidation/alkylation is the prominent mechanism to modulate function; (v) redox sensors must be thiol peroxidases by themselves or proteins with similarly reactive cysteine or selenocysteine (Sec) residues to kinetically compete with glutathione peroxidase (GPx)- and peroxiredoxin (Prx)-type peroxidases or glutathione-S-transferases, respectively, a postulate that still has to be verified for putative mammalian sensors. S-transferases and Prxs are considered for system complementation. The impact of NF-κB and Nrf2 on hormesis, management of inflammatory diseases, and cancer prevention is critically discussed. Antioxid. Redox Signal. 15, 2335–2381.

494 citations