scispace - formally typeset
Search or ask a question
Author

Baojun Bai

Bio: Baojun Bai is an academic researcher from Missouri University of Science and Technology. The author has contributed to research in topics: Enhanced oil recovery & Oil shale. The author has an hindex of 43, co-authored 354 publications receiving 7080 citations. Previous affiliations of Baojun Bai include China University of Petroleum & PetroChina.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper reported on laboratory experiments carried out to investigate PPG transport mechanisms through porous media, and they demonstrated that PPG propagation exhibits six patterns of behavior: direct pass, adsorption, deform and pass, snap-off-and-pass, shrink and pass and trap.
Abstract: Preformed particle gel (PPG) has been successfully synthesized and applied to control excess water production in most of the mature, waterflooded oil fields in China. This paper reports on laboratory experiments carried out to investigate PPG transport mechanisms through porous media. Visual observations in etchedglass micromodels demonstrate that PPG propagation through porous media exhibits six patterns of behavior: direct pass, adsorption, deform and pass, snap-off and pass, shrink and pass, and trap. At the macroscopic scale, PPG propagation through porous media can be described by three patterns: pass, broken and pass, and plug. The dominant pattern is determined by the pressure change with time along a tested core (as measured at specific points), the particle-size ratio of injected and produced particles from the core outlet, and the residual resistance factor of each segment along the core. Measurements from micromodel and routine coreflooding experiments show that a swollen PPG particle can pass through a pore throat with a diameter that is smaller than the particle diameter owing to the elasticity and deformability of the swollen PPG particle. The largest diameter ratio of a PPG particle and a pore throat that the PPG particle can pass through depends on the swollen PPG strength. PPG particles can pass through porous media only if the driving pressure gradient is higher than the threshold pressure gradient. The threshold pressure depends on the strength of the swollen PPG and the ratio of the particle diameter and the average pore diameter.

291 citations

Journal ArticleDOI
TL;DR: In this article, the authors classified polyacrylamide polymer gels into three types: in-situ monomer-based gel, in-Situ polymer-based gels, and preformed particle gels.

285 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of gelant compositions and reservoir environments on the two properties of PPG: swollen gel strength and swelling capacity were investigated. And the results showed that PPG properties are influenced by gelant composition, temperature, brine salinity, and pH below 6.
Abstract: Preformed particle gel (PPG) is a particled superabsorbent crossklinking polymer that can swell up to 200 times its orginal size in brine. The use of PPG as a fluid-diverting agent to control conformance is a novel process designed to overcome some distinct drawbacks inherent in in-situ gelation systems. This paper introduces the effect of gelant compositions and reservoir environments on the two properties of PPG: swollen gel strength and swelling capacity. Results have shown that PPG properties are influenced by gelant compositions, temperature, brine salinity, and pH below 6. Temperature increases PPG swelling capacity but decreases its swollen gel strength. Salinity decreases PPG swelling capacity but increases its swollen gel strength. PPG is thermostable at an elevated temperature of 120°C if a special additive agent is added into its gelant as a composition. PPG is strengthand sizecontrolled, environmentally friendly, and not sensitive to reservoir minerals and formation water salinity. Two field applications are introduced to illustrate the criteria of well candidate selection and the design and operation process of PPG treatments. Field applications show that PPG treatment is a cost-effective method to correct permeability heterogeneity for the reservoirs with fractures or channels, both of which are widely found in mature waterflooded oil fields.

284 citations

Journal ArticleDOI
01 Mar 2013-Fuel
TL;DR: In this paper, a 3D pore structure model was reconstructed from 200 two-dimensional SEM/FIB images, and the rock petrophysical properties, including porosity, permeability, and tortuosity, were calculated from the model.

216 citations

Journal ArticleDOI
TL;DR: In this paper, a review of polymer gel systems that can handle high-temperature excessive water treatments is presented and categorized into three major types: in situ cross-linked polymer gels, preformed gels and foamed gels.
Abstract: Polymer gel systems as water management materials have been widely used in recent years for enhanced oil recovery applications. However, most polymer gel systems are limited in their ability to withstand the harsh environments of high temperature and high salinity. Those polymer gel systems that can handle high-temperature excessive water treatments are reviewed in this paper and categorized into three major types: in situ cross-linked polymer gels, preformed gels, and foamed gels. Future directions for the development of polymer gel systems for high-temperature conditions are recommended. For excessive water management with temperatures from 80 to 120 °C, current polymer systems are substantially adequate. Polymer gel systems composed of partially hydrolyzed polyacrylamide (HPAM)/chromium can be combined with nanoparticle technology to elongate their gelation time and reduce the adsorption of chromium ions in the formation. Phenolic resin cross-linker systems have reasonable gelation times and gel streng...

209 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis.
Abstract: Global warming and climate change concerns have triggered global efforts to reduce the concentration of atmospheric carbon dioxide (CO2). Carbon dioxide capture and storage (CCS) is considered a crucial strategy for meeting CO2 emission reduction targets. In this paper, various aspects of CCS are reviewed and discussed including the state of the art technologies for CO2 capture, separation, transport, storage, leakage, monitoring, and life cycle analysis. The selection of specific CO2 capture technology heavily depends on the type of CO2 generating plant and fuel used. Among those CO2 separation processes, absorption is the most mature and commonly adopted due to its higher efficiency and lower cost. Pipeline is considered to be the most viable solution for large volume of CO2 transport. Among those geological formations for CO2 storage, enhanced oil recovery is mature and has been practiced for many years but its economical viability for anthropogenic sources needs to be demonstrated. There are growing interests in CO2 storage in saline aquifers due to their enormous potential storage capacity and several projects are in the pipeline for demonstration of its viability. There are multiple hurdles to CCS deployment including the absence of a clear business case for CCS investment and the absence of robust economic incentives to support the additional high capital and operating costs of the whole CCS process.

2,181 citations

11 Jun 2010
Abstract: The validity of the cubic law for laminar flow of fluids through open fractures consisting of parallel planar plates has been established by others over a wide range of conditions with apertures ranging down to a minimum of 0.2 µm. The law may be given in simplified form by Q/Δh = C(2b)3, where Q is the flow rate, Δh is the difference in hydraulic head, C is a constant that depends on the flow geometry and fluid properties, and 2b is the fracture aperture. The validity of this law for flow in a closed fracture where the surfaces are in contact and the aperture is being decreased under stress has been investigated at room temperature by using homogeneous samples of granite, basalt, and marble. Tension fractures were artificially induced, and the laboratory setup used radial as well as straight flow geometries. Apertures ranged from 250 down to 4µm, which was the minimum size that could be attained under a normal stress of 20 MPa. The cubic law was found to be valid whether the fracture surfaces were held open or were being closed under stress, and the results are not dependent on rock type. Permeability was uniquely defined by fracture aperture and was independent of the stress history used in these investigations. The effects of deviations from the ideal parallel plate concept only cause an apparent reduction in flow and may be incorporated into the cubic law by replacing C by C/ƒ. The factor ƒ varied from 1.04 to 1.65 in these investigations. The model of a fracture that is being closed under normal stress is visualized as being controlled by the strength of the asperities that are in contact. These contact areas are able to withstand significant stresses while maintaining space for fluids to continue to flow as the fracture aperture decreases. The controlling factor is the magnitude of the aperture, and since flow depends on (2b)3, a slight change in aperture evidently can easily dominate any other change in the geometry of the flow field. Thus one does not see any noticeable shift in the correlations of our experimental results in passing from a condition where the fracture surfaces were held open to one where the surfaces were being closed under stress.

1,557 citations

Journal ArticleDOI
TL;DR: The current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential are reviewed.
Abstract: Microorganisms synthesise a wide range of surface-active compounds (SAC), generally called biosurfactants. These compounds are mainly classified according to their molecular weight, physico-chemical properties and mode of action. The low-molecular-weight SACs or biosurfactants reduce the surface tension at the air/water interfaces and the interfacial tension at oil/water interfaces, whereas the high-molecular-weight SACs, also called bioemulsifiers, are more effective in stabilising oil-in-water emulsions. Biosurfactants are attracting much interest due to their potential advantages over their synthetic counterparts in many fields spanning environmental, food, biomedical, and other industrial applications. Their large-scale application and production, however, are currently limited by the high cost of production and by limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and the latest advances in biosurfactant applications and the biotechnological strategies being developed for improving production processes and future potential.

1,248 citations

Journal ArticleDOI
TL;DR: This article aims to review the literature concerning the choice of selectivity for hydrogels based on classification, application and processing to assess their potential in hi-tech applications in the biomedical, pharmaceutical, biotechnology, bioseparation, biosensor, agriculture, oil recovery and cosmetics fields.

905 citations