scispace - formally typeset
Search or ask a question
Author

Baokun Sui

Bio: Baokun Sui is an academic researcher from Huazhong Agricultural University. The author has contributed to research in topics: Rabies virus & Rabies. The author has an hindex of 6, co-authored 16 publications receiving 111 citations.
Topics: Rabies virus, Rabies, Medicine, Biology, Virus

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that K1685 and K1829 in the L protein play important roles in pathogenicity and immune evasion during RABV infection.
Abstract: Rabies, one of the oldest infectious diseases, still presents a public health threat in most parts of the world today. Its pathogen, rabies virus (RABV), can utilize its viral proteins, such as the nucleoprotein and phosphorylation protein, to subvert the host innate immune system. For a long time, the large (L) protein was believed to be essential for RABV transcription and replication, but its role in viral pathogenicity and immune evasion was not known. Recent studies have found that the conserved K-D-K-E tetrad motif in the L protein is related to the methyltransferase (MTase) activity in the viral mRNA process. In the present study, a series of RABV mutations in this motif was constructed with the recombinant CVS-B2c (rB2c) virus. Two of these mutants, rB2c-K1685A and rB2c-K1829A, were found to be stable and displayed an attenuated phenotype in both in vitro growth and in vivo pathogenicity in adult and suckling mice. Further studies demonstrated that these two mutants were more sensitive to the expression of the interferon-stimulated gene product IFIT2 than the parent virus. Taken together, our results suggest that K1685 and K1829 in the L protein play important roles in pathogenicity and immune evasion during RABV infection.Rabies continues to present a public health threat in most areas of the world, especially in the developing countries of Asia and Africa. The pathogenic mechanisms for rabies are not well understood. In the present study, it was found that the recombinant rabies viruses rB2c-K1685A and rB2c-K1829A, carrying mutations at the predicted MTase catalytic sites in the L protein, were highly attenuated both in vitro and in vivo. Further studies showed that these mutants were more sensitive to the expression of the interferon-stimulated gene product IFIT2 than the parent virus. These findings improve our understanding of rabies pathogenesis, which may help in developing potential therapeutics and an avirulent rabies vaccine.

38 citations

Journal ArticleDOI
TL;DR: Findings show that a neuronal lncRNA can exert an effective antiviral function via blocking a specific O-GlcNAcylation that determines EZH2 lysosomal degradation, rather than the traditional interferon-dependent pathway.
Abstract: The central nervous system (CNS) is vulnerable to viral infection, yet few host factors in the CNS are known to defend against invasion by neurotropic viruses. Long noncoding RNAs (lncRNAs) have been revealed to play critical roles in a wide variety of biological processes and are highly abundant in the mammalian brain, but their roles in defending against invasion of pathogens into the CNS remain unclear. We report here that multiple neurotropic viruses, including rabies virus, vesicular stomatitis virus, Semliki Forest virus, and herpes simplex virus 1, elicit the neuronal expression of a host-encoded lncRNA EDAL. EDAL inhibits the replication of these neurotropic viruses in neuronal cells and rabies virus infection in mouse brains. EDAL binds to the conserved histone methyltransferase enhancer of zest homolog 2 (EZH2) and specifically causes EZH2 degradation via lysosomes, reducing the cellular H3K27me3 level. The antiviral function of EDAL resides in a 56-nt antiviral substructure through which its 18-nt helix-loop intimately contacts multiple EZH2 sites surrounding T309, a known O-GlcNAcylation site. EDAL positively regulates the transcription of Pcp4l1 encoding a 10-kDa peptide, which inhibits the replication of multiple neurotropic viruses. Our findings show that a neuronal lncRNA can exert an effective antiviral function via blocking a specific O-GlcNAcylation that determines EZH2 lysosomal degradation, rather than the traditional interferon-dependent pathway.

28 citations

Journal ArticleDOI
14 Oct 2015-PLOS ONE
TL;DR: The results indicate that λ-CG P32 is a promising agent that can inhibit RABV infection mainly by inhibiting viral internalization and glycoprotein-mediated cell fusion and can be used for the development of novel anti-RABV drugs.
Abstract: Rabies, caused by rabies virus (RABV), is an acute, fatal encephalitic disease that affects many warm-blooded mammals. Currently, post-exposure prophylaxis regimens are effective for most rabies cases, but once the clinical signs of the disease appear, current treatment options become ineffective. Carrageenan has been reported as a potent inhibitor of many viruses. In this study, the λ-carrageenan (λ-CG) P32 was investigated for its potential role in inhibiting RABV infection. Our results show that P32 specifically inhibits the replication of several RABV strains but not vesicular stomatitis virus in multiple cell lines and shows low cytotoxicity. P32 mainly abrogated viral replication during the early stage of the post-adsorption period. Further studies demonstrated that P32 could affect not only viral internalization but also viral uncoating by blocking cell fusion mediated by RABV glycoprotein. Moreover, P32 can fully inhibit RABV infection in vitro during the post-adsorption period, whereas heparin and heparan sulfate, which possess similar structures to P32, showed significant but not complete inhibition of RABV infectivity. Collectively, our results indicate that λ-CG P32 is a promising agent that can inhibit RABV infection mainly by inhibiting viral internalization and glycoprotein-mediated cell fusion and can be used for the development of novel anti-RABV drugs.

28 citations

Journal ArticleDOI
TL;DR: A9 is identified as a robust inhibitor of transmissible gastroenteritis virus (TGEV) infection in cell-based assays and its inhibitory activity against TGEV replication mainly occurs by targeting p38, which provides vital clues to the design of novel drugs against CoVs.

21 citations

Journal ArticleDOI
TL;DR: Results suggest that TLR7 facilitates the induction of the humoral immunity in response to RABV, and down-regulation of some cytokines/chemokines results in a Th2-biased antibody production.
Abstract: Rabies virus (RABV) causes fatal encephalitis in mammals and poses a public health threat in many parts of the world. Vaccination remains the most effective means for prevention and control of rabies. Studies focusing on the mechanism of RABV immunogenicity are necessary for improvement of rabies vaccines. Toll-like receptor 7 (TLR7), an innate receptor sensing single-stranded viral RNA, is important for the induction of innate and adaptive immunity. Our studies revealed that the absence of TLR7 led to a lower antibody production in mice immunized with RABV. It is further found that TLR7 deficiency affected the recruitment of germinal center (GC) B cells and led to lessened GCs formation. Consistently, there were less plasma cells (PCs) and antibody secreting cells (ASC) in TLR7-/- mice than those in wild type (WT) mice, resulting in impaired production of RABV-neutralizing antibodies (VNA). TLR7 deficiency also impaired the generation of memory B cells (MBCs) and the induction of secondary immune responses. Moreover, TLR7 deficiency down-regulated the induction of some cytokines/chemokines, especially IFN-γ, resulting in a Th2-biased antibody production. Overall, our results suggest that TLR7 facilitates the induction of the humoral immunity in response to RABV.

17 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work highlights this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product.
Abstract: Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.

933 citations

Journal ArticleDOI
04 May 2016-Mbio
TL;DR: This is the first report of an RNase L antagonist expressed by a human or bat coronavirus and provides a potential mechanism for evasion of innate immunity by MERS-CoV while also identifying a potential target for therapeutic intervention.
Abstract: Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002. Like many coronaviruses, MERS-CoV carries genes that encode multiple accessory proteins that are not required for replication of the genome but are likely involved in pathogenesis. Evasion of host innate immunity through interferon (IFN) antagonism is a critical component of viral pathogenesis. The IFN-inducible oligoadenylate synthetase (OAS)-RNase L pathway activates upon sensing of viral double-stranded RNA (dsRNA). Activated RNase L cleaves viral and host single-stranded RNA (ssRNA), which leads to translational arrest and subsequent cell death, preventing viral replication and spread. Here we report that MERS-CoV, a lineage C Betacoronavirus, and related bat CoV NS4b accessory proteins have phosphodiesterase (PDE) activity and antagonize OAS-RNase L by enzymatically degrading 2′,5′-oligoadenylate (2-5A), activators of RNase L. This is a novel function for NS4b, which has previously been reported to antagonize IFN signaling. NS4b proteins are distinct from lineage A Betacoronavirus PDEs and rotavirus gene-encoded PDEs, in having an amino-terminal nuclear localization signal (NLS) and are localized mostly to the nucleus. However, the expression level of cytoplasmic MERS-CoV NS4b protein is sufficient to prevent activation of RNase L. Finally, this is the first report of an RNase L antagonist expressed by a human or bat coronavirus and provides a specific mechanism by which this occurs. Our findings provide a potential mechanism for evasion of innate immunity by MERS-CoV while also identifying a potential target for therapeutic intervention. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is the first highly pathogenic human coronavirus to emerge since severe acute respiratory syndrome coronavirus (SARS-CoV). MERS-CoV, like other coronaviruses, carries genes that encode accessory proteins that antagonize the host antiviral response, often the type I interferon response, and contribute to virulence. We found that MERS-CoV NS4b and homologs from related lineage C bat betacoronaviruses BtCoV-SC2013 (SC2013) and BtCoV-HKU5 (HKU5) are members of the 2H-phosphoesterase (2H-PE) enzyme family with phosphodiesterase (PDE) activity. Like murine coronavirus NS2, a previously characterized PDE, MERS NS4b, can antagonize activation of the OAS-RNase L pathway, an interferon-induced potent antiviral activity. Furthermore, MERS-CoV mutants with deletion of genes encoding accessory proteins NS3 to NS5 or NS4b alone or inactivation of the PDE can activate RNase L during infection of Calu-3 cells. Our report may offer a potential target for therapeutic intervention if NS4b proves to be critical to pathogenesis in in vivo models of MERS-CoV infection.

123 citations

Journal ArticleDOI
TL;DR: A review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications is provided.
Abstract: Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.

120 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors, and identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS co-virus 2 replication.
Abstract: The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan (λ-CGN), purified from marine red algae was investigated.
Abstract: Influenza virus and coronavirus, belonging to enveloped RNA viruses, are major causes of human respiratory diseases. The aim of this study was to investigate the broad spectrum antiviral activity of a naturally existing sulfated polysaccharide, lambda-carrageenan (λ-CGN), purified from marine red algae. Cell culture-based assays revealed that the macromolecule efficiently inhibited both influenza A and B viruses with EC50 values ranging from 0.3 to 1.4 μg/ml, as well as currently circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with an EC50 value of 0.9 ± 1.1 μg/ml. No toxicity to the host cells was observed at concentrations up to 300 μg/ml. Plaque titration and western blot analysis verified that λ-CGN reduced expression of viral proteins in cell lysates and suppressed progeny virus production in culture supernatants in a dose-dependent manner. This polyanionic compound exerts antiviral activity by targeting viral attachment to cell surface receptors and preventing virus entry. Moreover, its intranasal administration to mice during influenza A viral challenge not only alleviated infection-mediated reductions in body weight but also protected 60% of mice from virus-induced mortality. Thus, λ-CGN could be a promising antiviral agent for preventing infection with several respiratory viruses.

54 citations