scispace - formally typeset
Search or ask a question
Author

Baoshun Liu

Bio: Baoshun Liu is an academic researcher from Wuhan University of Technology. The author has contributed to research in topics: Materials science & Photocatalysis. The author has an hindex of 30, co-authored 93 publications receiving 3473 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a sulfur-doped graphitic carbon nitride (g-C 3 N 4 ) was fabricated by simply calcinating thiourea at 520°C, and it was found to absorb light up to 475nm corresponding to a band gap of 2.63 eV.
Abstract: Graphitic carbon nitride (g-C 3 N 4 ) is the most stable phase of all carbon nitride allotropes under ambient conditions. In this study, sulfur-doped g-C 3 N 4 was fabricated by simply calcinating thiourea at 520 °C. Sulfur-doped g-C 3 N 4 (TCN) was found to absorb light up to 475 nm corresponding to a band gap of 2.63 eV, which was narrower than that of un-doped g-C 3 N 4 (MCN) with a band gap of 2.7 eV. First-principle calculations based on spin-polarized density functional theory were utilized to investigate the theoretical partial density of states of the TCN and MCN, indicating that the band gaps of TCN and MCN were the same, but impurities existed in the TCN sample. Consequently, photogenerated electrons could easily jump from the impurity state to the conduction band or from the valence band to the impurity state. Photocatalytic CO 2 reduction was further used to evaluate the photoactivity of samples, and the CH 3 OH yield using TCN and MCN were 1.12 and 0.81 μmol g −1 , respectively. PL spectrum analysis and transient photocurrent responses were also carried out to verify the suggested photocatalysis mechanism.

1,022 citations

Journal ArticleDOI
TL;DR: In this article, a thin layer of g-C3N4 was applied on the surface of TiO2 nanosheets by heating the mixture of the mixture and urea, which led to the formation of a TiO 2@g-C 3N4 nanosheet heterostructure.

224 citations

Journal ArticleDOI
TL;DR: The thermodynamic driving force of photocatalysis was explained, and the functions of light and heat in photoc atalysis were distinguished, and some applications of the D-I model to study photocatalytic kinetics were discussed.
Abstract: Since the report of the Honda–Fujishima effect, heterogeneous photocatalysis has attracted much attention around the world because of its potential energy and environmental applications. Although great progresses have been made in recent years, most were focused on preparing highly-active photocatalysts and investigating visible light utilization. In fact, we are still unclear on the thermodynamic and kinetic nature of photocatalysis to date, which sometimes leads to misunderstandings for experimental results. It is timely to give a review and discussion on the thermodynamics and kinetics of photocatalysis, so as to direct future researches. However, there is an absence of a detailed review on this topic until now. In this article, we tried to review and discuss the thermodynamics and kinetics of photocatalysis. We explained the thermodynamic driving force of photocatalysis, and distinguished the functions of light and heat in photocatalysis. The Langmuir–Hinshelwood kinetic model, the ˙OH oxidation mechanism, and the direct–indirect (D–I) kinetic model were reviewed and compared. Some applications of the D–I model to study photocatalytic kinetics were also discussed. The electron transport mode and its importance in photocatalysis were investigated. Finally, the intrinsic relation between the kinetics and the thermodynamics of photocatalytic reactions was discussed.

210 citations

Journal ArticleDOI
TL;DR: In this paper, a simple one-step approach to fabricate transparent and self-cleaning super-hydrophobic coatings via the sol-gel processing of long-chain fluoroalkylsilane was reported.

196 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the Raman spectra, TEM, XPS, UV-visible and PL spectra to characterize the structure and composition of the TiO 2 -CeO 2 composite films with photocatalysis.

144 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this article, a review of recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, has been summarized.
Abstract: TiO 2 photocatalysis is widely used in a variety of applications and products in the environmental and energy fields, including self-cleaning surfaces, air and water purification systems, sterilization, hydrogen evolution, and photoelectrochemical conversion. The development of new materials, however, is strongly required to provide enhanced performances with respect to the photocatalytic properties and to find new uses for TiO 2 photocatalysis. In this review, recent developments in the area of TiO 2 photocatalysis research, in terms of new materials from a structural design perspective, have been summarized. The dimensionality associated with the structure of a TiO 2 material can affect its properties and functions, including its photocatalytic performance, and also more specifically its surface area, adsorption, reflectance, adhesion, and carrier transportation properties. We provide a brief introduction to the current situation in TiO 2 photocatalysis, and describe structurally controlled TiO 2 photocatalysts which can be classified into zero-, one-, two-, and three-dimensional structures. Furthermore, novel applications of TiO 2 surfaces for the fabrication of wettability patterns and for printing are discussed.

2,733 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Journal ArticleDOI
TL;DR: The field of surface science provides a unique approach to understand bulk, surface and interfacial phenomena occurring during TiO2 photocatalysis as mentioned in this paper, including photon absorption, charge transport and trapping, electron transfer dynamics, adsorbed state, mechanisms, poisons and promoters, and phase and form.

1,768 citations