scispace - formally typeset
Search or ask a question
Author

Baowei Fei

Bio: Baowei Fei is an academic researcher from University of Texas at Dallas. The author has contributed to research in topics: Hyperspectral imaging & Engineering. The author has an hindex of 38, co-authored 246 publications receiving 6681 citations. Previous affiliations of Baowei Fei include University of Patras & University Hospitals of Cleveland.


Papers
More filters
Journal ArticleDOI
TL;DR: An overview of the literature on medical hyperspectral imaging technology and its applications is presented, an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application are presented.
Abstract: Hyperspectral imaging (HSI) is an emerging imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. HSI acquires a three-dimensional dataset called hypercube, with two spatial dimensions and one spectral dimension. Spatially resolved spectral imaging obtained by HSI provides diagnostic information about the tissue physiology, morphology, and composition. This review paper presents an overview of the literature on medical hyperspectral imaging technology and its applications. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application.

1,605 citations

Journal ArticleDOI
TL;DR: A highly efficient drug vector for photodynamic therapy (PDT) drug delivery was developed by synthesizing PEGylated gold nanoparticle conjugates, which act as a water-soluble and biocompatible "cage" that allows delivery of a hydrophobic drug to its site of PDT action as discussed by the authors.
Abstract: A highly efficient drug vector for photodynamic therapy (PDT) drug delivery was developed by synthesizing PEGylated gold nanoparticle conjugates, which act as a water-soluble and biocompatible "cage" that allows delivery of a hydrophobic drug to its site of PDT action. The dynamics of drug release in vitro in a two-phase solution system and in vivo in cancer-bearing mice indicates that the process of drug delivery is highly efficient, and passive targeting prefers the tumor site. With the Au NP-Pc 4 conjugates, the drug delivery time required for PDT has been greatly reduced to less than 2 h, compared to 2 days for the free drug.

682 citations

Journal ArticleDOI
TL;DR: This review provides a review of ultrasound-guided, breast biopsy and the fusion of ultrasound with other imaging modalities, especially magnetic resonance imaging (MRI), and discusses their future directions.
Abstract: Ultrasound imaging is a commonly used modality for breast cancer detection and diagnosis. In this review, we summarize ultrasound imaging technologies and their clinical applications for the management of breast cancer patients. The technologies include ultrasound elastography, contrast-enhanced ultrasound, 3-D ultrasound, automatic breast ultrasound and computer-aided detection of breast ultrasound. We summarize the study results seen in the literature and discuss their future directions. We also provide a review of ultrasound-guided, breast biopsy and the fusion of ultrasound with other imaging modalities, especially magnetic resonance imaging (MRI). For comparison, we also discuss the diagnostic performance of mammography, MRI, positron emission tomography and computed tomography for breast cancer diagnosis at the end of this review. New ultrasound imaging techniques, ultrasound-guided biopsy and the fusion of ultrasound with other modalities provide important tools for the management of breast patients.

243 citations

Journal ArticleDOI
11 Jul 2013-ACS Nano
TL;DR: A RGD4C-modified ferritin (RFRT), a protein-based nanoparticle, can serve as a safe and efficient PS vehicle that can transport photosensitizers to tumors in a site-specific manner and holds great clinical translation potential.
Abstract: Photodynamic therapy is an emerging treatment modality that is under intensive preclinical and clinical investigations for many types of disease including cancer. Despite the promise, there is a lack of a reliable drug delivery vehicle that can transport photosensitizers (PSs) to tumors in a site-specific manner. Previous efforts have been focused on polymer- or liposome-based nanocarriers, which are usually associated with a suboptimal PS loading rate and a large particle size. We report herein that a RGD4C-modified ferritin (RFRT), a protein-based nanoparticle, can serve as a safe and efficient PS vehicle. Zinc hexadecafluorophthalocyanine (ZnF16Pc), a potent PS with a high 1O2 quantum yield but poor water solubility, can be encapsulated into RFRTs with a loading rate as high as ∼60 wt % (i.e., 1.5 mg of ZnF16Pc can be loaded on 1 mg of RFRTs), which far exceeds those reported previously. Despite the high loading, the ZnF16Pc-loaded RFRTs (P-RFRTs) show an overall particle size of 18.6 ± 2.6 nm, which i...

236 citations

Journal ArticleDOI
TL;DR: BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem to achieve high classification efficiency for multiclass problems.
Abstract: We present a new architecture named Binary Tree of support vector machine (SVM), or BTS, in order to achieve high classification efficiency for multiclass problems. BTS and its enhanced version, c-BTS, decrease the number of binary classifiers to the greatest extent without increasing the complexity of the original problem. In the training phase, BTS has N-1 binary classifiers in the best situation (N is the number of classes), while it has log4/3((N+3)/4) binary tests on average when making a decision. At the same time the upper bound of convergence complexity is determined. The experiments in this paper indicate that maintaining comparable accuracy, BTS is much faster to be trained than other methods. Especially in classification, due to its Log complexity, it is much faster than directed acyclic graph SVM (DAGSVM) and ECOC in problems that have big class number

230 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview is presented of the medical image processing literature on mutual-information-based registration, an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application.
Abstract: An overview is presented of the medical image processing literature on mutual-information-based registration. The aim of the survey is threefold: an introduction for those new to the field, an overview for those working in the field, and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of mutual-information-based registration. The main division is in aspects of the methodology and of the application. The part on methodology describes choices made on facets such as preprocessing of images, gray value interpolation, optimization, adaptations to the mutual information measure, and different types of geometrical transformations. The part on applications is a reference of the literature available on different modalities, on interpatient registration and on different anatomical objects. Comparison studies including mutual information are also considered. The paper starts with a description of entropy and mutual information and it closes with a discussion on past achievements and some future challenges.

3,121 citations

Journal ArticleDOI
TL;DR: It is argued that gold nanotechnology-enabled biomedicine is not simply an act of 'gilding the (nanomedicinal) lily', but that a new 'Golden Age' of biomedical nanotechnology is truly upon us.
Abstract: Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references).

2,712 citations

Journal ArticleDOI
TL;DR: This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications.
Abstract: This critical review provides an overall survey of the basic concepts and up-to-date literature results concerning the very promising use of gold nanoparticles (AuNPs) for medicinal applications. It includes AuNP synthesis, assembly and conjugation with biological and biocompatible ligands, plasmon-based labeling and imaging, optical and electrochemical sensing, diagnostics, therapy (drug vectorization and DNA/gene delivery) for various diseases, in particular cancer (also Alzheimer, HIV, hepatitis, tuberculosis, arthritis, diabetes) and the essential in vitro and in vivo toxicity. It will interest the medicine, chemistry, spectroscopy, biochemistry, biophysics and nanoscience communities (211 references).

2,499 citations

Journal ArticleDOI

1,989 citations