scispace - formally typeset
Search or ask a question
Author

Baptiste Cecconi

Bio: Baptiste Cecconi is an academic researcher from University of Paris. The author has contributed to research in topics: Magnetosphere of Saturn & Magnetosphere. The author has an hindex of 38, co-authored 252 publications receiving 4784 citations. Previous affiliations of Baptiste Cecconi include Janssen Pharmaceutica & University of Toulouse.


Papers
More filters
Journal ArticleDOI
TL;DR: The STEREO/WAVES instrument as discussed by the authors was designed to measure the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz.
Abstract: This paper introduces and describes the radio and plasma wave investigation on the STEREO Mission: STEREO/WAVES or S/WAVES. The S/WAVES instrument includes a suite of state-of-the-art experiments that provide comprehensive measurements of the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz. The instrument has a direction finding or goniopolarimetry capability to perform 3D localization and tracking of radio emissions associated with streams of energetic electrons and shock waves associated with Coronal Mass Ejections (CMEs). The scientific objectives include: (i) remote observation and measurement of radio waves excited by energetic particles throughout the 3D heliosphere that are associated with the CMEs and with solar flare phenomena, and (ii) in-situ measurement of the properties of CMEs and interplanetary shocks, such as their electron density and temperature and the associated plasma waves near 1 Astronomical Unit (AU). Two companion papers provide details on specific aspects of the S/WAVES instrument, namely the electric antenna system (Bale et al., Space Sci. Rev., 2007) and the direction finding technique (Cecconi et al., Space Sci. Rev., 2007).

374 citations

Journal ArticleDOI
25 Feb 2005-Science
TL;DR: Radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 ± 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981, and many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit.
Abstract: We report data from the Cassini radio and plasma wave instrument during the approach and first orbit at Saturn. During the approach, radio emissions from Saturn showed that the radio rotation period is now 10 hours 45 minutes 45 ± 36 seconds, about 6 minutes longer than measured by Voyager in 1980 to 1981. In addition, many intense impulsive radio signals were detected from Saturn lightning during the approach and first orbit. Some of these have been linked to storm systems observed by the Cassini imaging instrument. Within the magnetosphere, whistler-mode auroral hiss emissions were observed near the rings, suggesting that a strong electrodynamic interaction is occurring in or near the rings.

283 citations

Journal ArticleDOI
01 May 2009
TL;DR: A large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from 1 AU and measured near each planet as mentioned in this paper.
Abstract: [1] While the terrestrial aurorae are known to be driven primarily by the interaction of the Earth’s magnetosphere with the solar wind, there is considerable evidence that auroral emissions on Jupiter and Saturn are driven primarily by internal processes, with the main energy source being the planets’ rapid rotation. Prior observations have suggested there might be some influence of the solar wind on Jupiter’s aurorae and indicated that auroral storms on Saturn can occur at times of solar wind pressure increases. To investigate in detail the dependence of auroral processes on solar wind conditions, a large campaign of observations of these planets has been undertaken using the Hubble Space Telescope, in association with measurements from planetary spacecraft and solar wind conditions both propagated from 1 AU and measured near each planet. The data indicate a brightening of both the auroral emissions and Saturn kilometric radiation at Saturn close in time to the arrival of solar wind shocks and pressure increases, consistent with a direct physical relationship between Saturnian auroral processes and solar wind conditions. At Jupiter the correlation is less strong, with increases in total auroral power seen near the arrival of solar wind forward shocks but little increase observed near reverse shocks. In addition, auroral dawn storms have been observed when there was little change in solar wind conditions. The data are consistent with some solar wind influence on some Jovian auroral processes, while the auroral activity also varies independently of the solar wind. This extensive data set will serve to constrain theoretical models for the interaction of the solar wind with the magnetospheres of Jupiter and Saturn.

172 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply the calibration method developed by Dulk et al. to the data from the Cassini/Radio and Plasma Wave Science (RPWS) High-Frequency Receiver in order to derive flux density measurements of six components of the Jovian low-frequency radio spectrum over the full frequency range of the instrument (3.5 kHz to 16.1 MHz).
Abstract: [1] We apply the calibration method developed by Dulk et al. [2001] to the data from the Cassini/Radio and Plasma Wave Science (RPWS) High-Frequency Receiver in order to derive flux density measurements of six components of the Jovian low-frequency radio spectrum over the full frequency range of the instrument (3.5 kHz to 16.1 MHz). The estimated accuracy is better than 50%, i.e., much less than the intrinsic variations of the flux densities of these radiosources. It is mainly limited by the accuracy of the model used for the radio galactic background. Instrumental parameters such as the antennas' effective lengths and base capacitance are constrained in the calibration process. From 6 months of calibrated data centered on the Cassini-Jupiter flyby, we derive the average and peak Jovian radio spectrum between 3.5 and 16.1 MHz and its range of fluctuations, from which we deduce constraints on the beaming of the various radio components and estimate the power emitted by each component. Our calibration procedure also allows us to compare Cassini measurements of the Jovian radio spectrum with ground-based measurements performed, e.g., in Nancay above the ionospheric cutoff (10−15 MHz). It will be used to derive absolute flux measurements during the Saturn tour.

156 citations

Journal ArticleDOI
TL;DR: The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind as mentioned in this paper.
Abstract: The STEREO/WAVES experiment is designed to measure the electric component of radio emission from interplanetary radio bursts and in situ plasma waves and fluctuations in the solar wind. Interplanetary radio bursts are generated from electron beams at interplanetary shocks and solar flares and are observed from near the Sun to 1 AU, corresponding to frequencies of approximately 16 MHz to 10 kHz. In situ plasma waves occur in a range of wavelengths larger than the Debye length in the solar wind plasma λ D ≈10 m and appear Doppler-shifted into the frequency regime down to a fraction of a Hertz. These phenomena are measured by STEREO/WAVES with a set of three orthogonal electric monopole antennas. This paper describes the electrical and mechanical design of the antenna system and discusses efforts to model the antenna pattern and response and methods for in-flight calibration.

128 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle to understand the causes and mechanisms of coronal mass ejection (CME) initiation and follow the propagation of CMEs through the inner heliosphere to Earth as mentioned in this paper.
Abstract: The twin STEREO spacecraft were launched on October 26, 2006, at 00:52 UT from Kennedy Space Center aboard a Delta 7925 launch vehicle. After a series of highly eccentric Earth orbits with apogees beyond the moon, each spacecraft used close flybys of the moon to escape into orbits about the Sun near 1 AU. Once in heliospheric orbit, one spacecraft trails Earth while the other leads. As viewed from the Sun, the two spacecraft separate at approximately 44 to 45 degrees per year. The purposes of the STEREO Mission are to understand the causes and mechanisms of coronal mass ejection (CME) initiation and to follow the propagation of CMEs through the inner heliosphere to Earth. Researchers will use STEREO measurements to study the mechanisms and sites of energetic particle acceleration and to develop three-dimensional (3-D) time-dependent models of the magnetic topology, temperature, density and velocity of the solar wind between the Sun and Earth. To accomplish these goals, each STEREO spacecraft is equipped with an almost identical set of optical, radio and in situ particles and fields instruments provided by U.S. and European investigators. The SECCHI suite of instruments includes two white light coronagraphs, an extreme ultraviolet imager and two heliospheric white light imagers which track CMEs out to 1 AU. The IMPACT suite of instruments measures in situ solar wind electrons, energetic electrons, protons and heavier ions. IMPACT also includes a magnetometer to measure the in situ magnetic field strength and direction. The PLASTIC instrument measures the composition of heavy ions in the ambient plasma as well as protons and alpha particles. The S/WAVES instrument uses radio waves to track the location of CME-driven shocks and the 3-D topology of open field lines along which flow particles produced by solar flares. Each of the four instrument packages produce a small real-time stream of selected data for purposes of predicting space weather events at Earth. NOAA forecasters at the Space Environment Center and others will use these data in their space weather forecasting and their resultant products will be widely used throughout the world. In addition to the four instrument teams, there is substantial participation by modeling and theory oriented teams. All STEREO data are freely available through individual Web sites at the four Principal Investigator institutions as well as at the STEREO Science Center located at NASA Goddard Space Flight Center.

1,579 citations

Journal ArticleDOI
17 Feb 2005-Nature
TL;DR: The demonstration of a continuous-wave silicon Raman laser is demonstrated and it is shown that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide.
Abstract: Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.

1,267 citations

01 Jan 2013
TL;DR: Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: to reproduce or to verify research, to make results of publicly funded research available to the public, to enable others to ask new questions of extant data, and to advance the state of research and innovation.
Abstract: We must all accept that science is data and that data are science, and thus provide for, and justify the need for the support of, much-improved data curation. (Hanson, Sugden, & Alberts) Researchers are producing an unprecedented deluge of data by using new methods and instrumentation. Others may wish to mine these data for new discoveries and innovations. However, research data are not readily available as sharing is common in only a few fields such as astronomy and genomics. Data sharing practices in other fields vary widely. Moreover, research data take many forms, are handled in many ways, using many approaches, and often are difficult to interpret once removed from their initial context. Data sharing is thus a conundrum. Four rationales for sharing data are examined, drawing examples from the sciences, social sciences, and humanities: (1) to reproduce or to verify research, (2) to make results of publicly funded research available to the public, (3) to enable others to ask new questions of extant data, and (4) to advance the state of research and innovation. These rationales differ by the arguments for sharing, by beneficiaries, and by the motivations and incentives of the many stakeholders involved. The challenges are to understand which data might be shared, by whom, with whom, under what conditions, why, and to what effects. Answers will inform data policy and practice. © 2012 Wiley Periodicals, Inc.

634 citations