scispace - formally typeset
Search or ask a question
Author

Barbara A. Demeneix

Bio: Barbara A. Demeneix is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Thyroid hormone receptor & Neural stem cell. The author has an hindex of 51, co-authored 198 publications receiving 14752 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices because its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysOSomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.
Abstract: Several polycations possessing substantial buffering capacity below physiological pH, such as lipopolyamines and polyamidoamine polymers, are efficient transfection agents per se--i.e., without the addition of cell targeting or membrane-disruption agents. This observation led us to test the cationic polymer polyethylenimine (PEI) for its gene-delivery potential. Indeed, every third atom of PEI is a protonable amino nitrogen atom, which makes the polymeric network an effective "proton sponge" at virtually any pH. Luciferase reporter gene transfer with this polycation into a variety of cell lines and primary cells gave results comparable to, or even better than, lipopolyamines. Cytotoxicity was low and seen only at concentrations well above those required for optimal transfection. Delivery of oligonucleotides into embryonic neurons was followed by using a fluorescent probe. Virtually all neurons showed nuclear labeling, with no toxic effects. The optimal PEI cation/anion balance for in vitro transfection is only slightly on the cationic side, which is advantageous for in vivo delivery. Indeed, intracerebral luciferase gene transfer into newborn mice gave results comparable (for a given amount of DNA) to the in vitro transfection of primary rat brain endothelial cells or chicken embryonic neurons. Together, these properties make PEI a promising vector for gene therapy and an outstanding core for the design of more sophisticated devices. Our hypothesis is that its efficiency relies on extensive lysosome buffering that protects DNA from nuclease degradation, and consequent lysosomal swelling and rupture that provide an escape mechanism for the PEI/DNA particles.

6,213 citations

Journal ArticleDOI
TL;DR: A general and efficient transfection procedure, based on compacted lipopolyamine-coated plasmids, has been developed on endocrine cells of the intermediate lobe of the pituitary as a general tool for physiological work on primary cells.
Abstract: A general and efficient transfection procedure, based on compacted lipopolyamine-coated plasmids, has been developed. The active species is obtained by simple addition of excess synthetic lipospermine solution to the DNA and binds within minutes to the cell membrane. This technique has been developed on endocrine cells of the intermediate lobe of the pituitary as a general tool for physiological work on primary cells; it is not toxic and does not interfere with physiological regulations in melanotrope cells. A variety of eukaryotic cell cultures also have been transfected with success for transient and stable expression.

809 citations

Journal ArticleDOI
TL;DR: It is shown that the cationic polymer polyethylenimine (PEI) provides unprecedentedly high levels of transgene expression in the mature mouse brain and appears to have potential for fundamental research and genetic therapy of the brain.
Abstract: Nonviral gene transfer into the central nervous system (CNS) offers the prospect of providing safe therapies for neurological disorders and manipulating gene expression for studying neuronal function. However, results reported so far have been disappointing. We show that the cationic polymer polyethylenimine (PEI) provides unprecedentedly high levels of transgene expression in the mature mouse brain. Three different preparations of PEI (25-, 50-, and 800-kD) were compared for their transfection efficiencies in the brains of adult mice. The highest levels of transfection were obtained with the 25-kD polymer. With this preparation, DNA/PEI complexes bearing mean ionic charge ratios closest to neutrality gave the best results. Under such conditions, and using a cytomegalovirus (CMV)-luciferase construction, we obtained up to 0.4 10(6) RLU/microgram DNA (equivalent to 0.4 ng of luciferase), which is close to the values obtained using PEI to transfect neuronal cultures and the more easily transfected newborn mouse brain (10(6) RLU/microgram DNA). Widespread expression (over 6 mm3) of marker (luciferase) or functional genes (bcl2) was obtained in neurons and glia after injection into the cerebral cortex, hippocampus, and hypothalamus. Transgene expression was found more than 3 months post-injection in cortical neurons. No morbidity was observed with any of the preparations used. Thus, PEI, a low-toxicity vector, appears to have potential for fundamental research and genetic therapy of the brain.

585 citations

Journal ArticleDOI
TL;DR: Findings indicate that the PEI/DNA complexes pass the capillary barrier in the lung, and linear PEI has promise as a vector for intravenous transfer of therapeutic genes.
Abstract: Generally, cationic vector-based intravenous delivery of DNA is hindered by interactions of positively charged complexes with serum proteins. However, if optimally formulated, cationic vectors can provide reasonable levels of transfection in the lung either by intravenous or intrapulmonary routes. We investigated the in vivo transfection capacity of a cationic polymer: linear, 22 kDa polyethylenimine. PEI/DNA complexes were formulated in 5% glucose and delivered into adult mice through the tail vein. Two marker genes were used, β-galactosidase and luciferase. High levels of luciferase expression (107 RLU/mg protein) were found in the lung when DNA was complexed with PEI at a ratio of 4 nitrogen equivalents per DNA phosphate. Lower levels of transfection were found in the heart, spleen, liver and kidney. Expression was dose- and time-dependent in all tissues examined. In the lung, β-galactosidase staining showed transgene expression in clusters of 10 or more pulmonary cells including the alveolar endothelium, squamous and great alveolar epithelial cells (type I and II pneumocytes) and septal cells. These findings indicate that the complexes pass the capillary barrier in the lung. Although the delivery mechanism requires elucidation, linear PEI has promise as a vector for intravenous transfer of therapeutic genes.

369 citations

Journal ArticleDOI
TL;DR: The surprisingly high relative efficiency of pure plasmid DNA suggests that this method will provide a simple, safe and viable alternative for gene therapy involving muscle tissue.
Abstract: Direct gene transfer into skeletal muscle offers several therapeutic possibilities. We assessed direct intramuscular injection of recombinant plasmids, adenovirus, or retrovirus in normal or regenerating muscles of mice. The incorporation and expression of reporter genes introduced by any of these three vectors is greater in regenerating than in mature muscle. In regenerating muscle, pure DNA and adenovirus result in equivalent numbers of fibers expressing reporter gene (> 10%), but adenovirus also induces considerable cellular infiltration. In mature muscle, recombinant DNA is better than adenovirus. Retrovirus failed to infect mature muscle fibers and was less effective than plasmid DNA or adenovirus in regenerating muscle. The surprisingly high relative efficiency of pure plasmid DNA suggests that this method will provide a simple, safe and viable alternative for gene therapy involving muscle tissue.

328 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In response to stress, the brain activates several neuropeptide-secreting systems, which eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators as mentioned in this paper.
Abstract: In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.

3,727 citations

Journal ArticleDOI
TL;DR: The evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology is presented.
Abstract: Thereisgrowinginterestinthepossiblehealththreatposedbyendocrine-disruptingchemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor , retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. (Endocrine Reviews 30: 293–342, 2009)

3,576 citations

Journal ArticleDOI
TL;DR: The utility of polymeric micelles formed through the multimolecular assembly of block copolymers as novel core-shell typed colloidal carriers for drug and gene targeting and their feasibility as non-viral gene vectors is highlighted.

3,457 citations

Journal ArticleDOI
Ruth Duncan1
TL;DR: The successful clinical application of polymer–protein conjugates, and promising clinical results arising from trials with polymer–anticancer-drug conjugate, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.
Abstract: As we enter the twenty-first century, research at the interface of polymer chemistry and the biomedical sciences has given rise to the first nano-sized (5-100 nm) polymer-based pharmaceuticals, the 'polymer therapeutics'. Polymer therapeutics include rationally designed macromolecular drugs, polymer-drug and polymer-protein conjugates, polymeric micelles containing covalently bound drug, and polyplexes for DNA delivery. The successful clinical application of polymer-protein conjugates, and promising clinical results arising from trials with polymer-anticancer-drug conjugates, bode well for the future design and development of the ever more sophisticated bio-nanotechnologies that are needed to realize the full potential of the post-genomic age.

3,184 citations