scispace - formally typeset
Search or ask a question
Author

Barbara E. Engelhardt

Bio: Barbara E. Engelhardt is an academic researcher from Princeton University. The author has contributed to research in topics: Expression quantitative trait loci & Gaussian process. The author has an hindex of 34, co-authored 129 publications receiving 8710 citations. Previous affiliations of Barbara E. Engelhardt include University of Chicago & University of California, Berkeley.


Papers
More filters
Journal ArticleDOI
12 Oct 2017-Nature
TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Abstract: Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.

3,289 citations

Journal ArticleDOI
01 Apr 2010-Nature
TL;DR: It is demonstrated that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites.
Abstract: Understanding the genetic mechanisms underlying natural variation in gene expression is a central goal of both medical and evolutionary genetics, and studies of expression quantitative trait loci (eQTLs) have become an important tool for achieving this goal. Although all eQTL studies so far have assayed messenger RNA levels using expression microarrays, recent advances in RNA sequencing enable the analysis of transcript variation at unprecedented resolution. We sequenced RNA from 69 lymphoblastoid cell lines derived from unrelated Nigerian individuals that have been extensively genotyped by the International HapMap Project. By pooling data from all individuals, we generated a map of the transcriptional landscape of these cells, identifying extensive use of unannotated untranslated regions and more than 100 new putative protein-coding exons. Using the genotypes from the HapMap project, we identified more than a thousand genes at which genetic variation influences overall expression levels or splicing. We demonstrate that eQTLs near genes generally act by a mechanism involving allele-specific expression, and that variation that influences the inclusion of an exon is enriched within and near the consensus splice sites. Our results illustrate the power of high-throughput sequencing for the joint analysis of variation in transcription, splicing and allele-specific expression across individuals.

1,325 citations

Posted ContentDOI
03 Oct 2019-bioRxiv
TL;DR: Analysis of the v8 data provides insights into the tissue-specificity of genetic effects, and shows that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.
Abstract: The Genotype-Tissue Expression (GTEx) project was established to characterize genetic effects on the transcriptome across human tissues, and to link these regulatory mechanisms to trait and disease associations. Here, we present analyses of the v8 data, based on 17,382 RNA-sequencing samples from 54 tissues of 948 post-mortem donors. We comprehensively characterize genetic associations for gene expression and splicing in cis and trans, showing that regulatory associations are found for almost all genes, and describe the underlying molecular mechanisms and their contribution to allelic heterogeneity and pleiotropy of complex traits. Leveraging the large diversity of tissues, we provide insights into the tissue-specificity of genetic effects, and show that cell type composition is a key factor in understanding gene regulatory mechanisms in human tissues.

1,243 citations

Journal ArticleDOI
TL;DR: A mathematical expression is derived to compute PrediXcan results using summary data, and the effects of gene expression variation on human phenotypes in 44 GTEx tissues and >100 phenotypes are investigated.
Abstract: Scalable, integrative methods to understand mechanisms that link genetic variants with phenotypes are needed. Here we derive a mathematical expression to compute PrediXcan (a gene mapping approach) results using summary data (S-PrediXcan) and show its accuracy and general robustness to misspecified reference sets. We apply this framework to 44 GTEx tissues and 100+ phenotypes from GWAS and meta-analysis studies, creating a growing public catalog of associations that seeks to capture the effects of gene expression variation on human phenotypes. Replication in an independent cohort is shown. Most of the associations are tissue specific, suggesting context specificity of the trait etiology. Colocalized significant associations in unexpected tissues underscore the need for an agnostic scanning of multiple contexts to improve our ability to detect causal regulatory mechanisms. Monogenic disease genes are enriched among significant associations for related traits, suggesting that smaller alterations of these genes may cause a spectrum of milder phenotypes.

657 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Posted ContentDOI
17 Nov 2014-bioRxiv
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-Seq data, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data. DESeq2 uses shrinkage estimation for dispersions and fold changes to improve stability and interpretability of the estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression and facilitates downstream tasks such as gene ranking and visualization. DESeq2 is available as an R/Bioconductor package.

17,014 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
John T. Lonsdale, Jeffrey Thomas, Mike Salvatore, Rebecca Phillips, Edmund Lo, Saboor Shad, Richard Hasz, Gary Walters, Fernando U. Garcia1, Nancy Young2, Barbara A. Foster3, Mike Moser3, Ellen Karasik3, Bryan Gillard3, Kimberley Ramsey3, Susan L. Sullivan, Jason Bridge, Harold Magazine, John Syron, Johnelle Fleming, Laura A. Siminoff4, Heather M. Traino4, Maghboeba Mosavel4, Laura Barker4, Scott D. Jewell5, Daniel C. Rohrer5, Dan Maxim5, Dana Filkins5, Philip Harbach5, Eddie Cortadillo5, Bree Berghuis5, Lisa Turner5, Eric Hudson5, Kristin Feenstra5, Leslie H. Sobin6, James A. Robb6, Phillip Branton, Greg E. Korzeniewski6, Charles Shive6, David Tabor6, Liqun Qi6, Kevin Groch6, Sreenath Nampally6, Steve Buia6, Angela Zimmerman6, Anna M. Smith6, Robin Burges6, Karna Robinson6, Kim Valentino6, Deborah Bradbury6, Mark Cosentino6, Norma Diaz-Mayoral6, Mary Kennedy6, Theresa Engel6, Penelope Williams6, Kenyon Erickson, Kristin G. Ardlie7, Wendy Winckler7, Gad Getz7, Gad Getz8, David S. DeLuca7, MacArthur Daniel MacArthur8, MacArthur Daniel MacArthur7, Manolis Kellis7, Alexander Thomson7, Taylor Young7, Ellen Gelfand7, Molly Donovan7, Yan Meng7, George B. Grant7, Deborah C. Mash9, Yvonne Marcus9, Margaret J. Basile9, Jun Liu8, Jun Zhu10, Zhidong Tu10, Nancy J. Cox11, Dan L. Nicolae11, Eric R. Gamazon11, Hae Kyung Im11, Anuar Konkashbaev11, Jonathan K. Pritchard12, Jonathan K. Pritchard11, Matthew Stevens11, Timothée Flutre11, Xiaoquan Wen11, Emmanouil T. Dermitzakis13, Tuuli Lappalainen13, Roderic Guigó, Jean Monlong, Michael Sammeth, Daphne Koller14, Alexis Battle14, Sara Mostafavi14, Mark I. McCarthy15, Manual Rivas15, Julian Maller15, Ivan Rusyn16, Andrew B. Nobel16, Fred A. Wright16, Andrey A. Shabalin16, Mike Feolo17, Nataliya Sharopova17, Anne Sturcke17, Justin Paschal17, James M. Anderson17, Elizabeth L. Wilder17, Leslie Derr17, Eric D. Green17, Jeffery P. Struewing17, Gary F. Temple17, Simona Volpi17, Joy T. Boyer17, Elizabeth J. Thomson17, Mark S. Guyer17, Cathy Ng17, Assya Abdallah17, Deborah Colantuoni17, Thomas R. Insel17, Susan E. Koester17, Roger Little17, Patrick Bender17, Thomas Lehner17, Yin Yao17, Carolyn C. Compton17, Jimmie B. Vaught17, Sherilyn Sawyer17, Nicole C. Lockhart17, Joanne P. Demchok17, Helen F. Moore17 
TL;DR: The Genotype-Tissue Expression (GTEx) project is described, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.
Abstract: Genome-wide association studies have identified thousands of loci for common diseases, but, for the majority of these, the mechanisms underlying disease susceptibility remain unknown. Most associated variants are not correlated with protein-coding changes, suggesting that polymorphisms in regulatory regions probably contribute to many disease phenotypes. Here we describe the Genotype-Tissue Expression (GTEx) project, which will establish a resource database and associated tissue bank for the scientific community to study the relationship between genetic variation and gene expression in human tissues.

6,545 citations