scispace - formally typeset
Search or ask a question
Author

Barbara F. Lasinski

Bio: Barbara F. Lasinski is an academic researcher from Lawrence Livermore National Laboratory. The author has contributed to research in topics: Laser & Inertial confinement fusion. The author has an hindex of 35, co-authored 83 publications receiving 5388 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2).
Abstract: An intense collimated beam of high-energy protons is emitted normal to the rear surface of thin solid targets irradiated at 1 PW power and peak intensity 3x10(20) W cm(-2). Up to 48 J ( 12%) of the laser energy is transferred to 2x10(13) protons of energy >10 MeV. The energy spectrum exhibits a sharp high-energy cutoff as high as 58 MeV on the axis of the beam which decreases in energy with increasing off axis angle. Proton induced nuclear processes have been observed and used to characterize the beam.

1,496 citations

Journal ArticleDOI
TL;DR: In this paper, the energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques.
Abstract: In recent Petawatt laser experiments at Lawrence Livermore National Laboratory, several hundred joules of 1 μm laser light in 0.5–5.0-ps pulses with intensities up to 3×1020 W cm−2 were incident on solid targets and produced a strongly relativistic interaction. The energy content, spectra, and angular patterns of the photon, electron, and ion radiations have all been diagnosed in a number of ways, including several novel (to laser physics) nuclear activation techniques. About 40%–50% of the laser energy is converted to broadly beamed hot electrons. Their beam centroid direction varies from shot to shot, but the resulting bremsstrahlung beam has a consistent width. Extraordinarily luminous ion beams (primarily protons) almost precisely normal to the rear of various targets are seen—up to 3×1013 protons with kTion∼several MeV representing ∼6% of the laser energy. Ion energies up to at least 55 MeV are observed. The ions appear to originate from the rear target surfaces. The edge of the ion beam is very shar...

868 citations

Journal ArticleDOI
TL;DR: In this article, the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured.
Abstract: In an experimental study of the physics of fast ignition the characteristics of the hot electron source at laser intensities up to 10(to the 20th power) Wcm{sup -2} and the heating produced at depth by hot electrons have been measured. Efficient generation of hot electrons but less than the anticipated heating have been observed.

335 citations

Journal ArticleDOI
TL;DR: The first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime are reported, showing an enhanced absorption at intensities above 10(20) W/cm(2), reaching 60% for near-normal incidence and 80%-90% for 45 degrees incidence.
Abstract: We report the first direct measurements of total absorption of short laser pulses on solid targets in the ultrarelativistic regime. The data show an enhanced absorption at intensities above ${10}^{20}\text{ }\text{ }\mathrm{W}/{\mathrm{cm}}^{2}$, reaching 60% for near-normal incidence and 80%--90% for 45\ifmmode^\circ\else\textdegree\fi{} incidence. Two-dimensional particle-in-cell simulations demonstrate that such high absorption is consistent with both interaction with preplasma and hole boring by the intense laser pulse. A large redshift in the second harmonic indicates a surface recession velocity of 0.035c.

193 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included, as the critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient.
Abstract: Marshall Rosenbluth’s extensive contributions included seminal analysis of the physics of the laser-plasma interaction and review and advocacy of the inertial fusion program. Over the last decade he avidly followed the efforts of many scientists around the world who have studied Fast Ignition, an alternate form of inertial fusion. In this scheme, the fuel is first compressed by a conventional inertial confinement fusion driver and then ignited by a short (∼10ps) pulse, high-power laser. Due to technological advances, such short-pulse lasers can focus power equivalent to that produced by the hydrodynamic stagnation of conventional inertial fusion capsules. This review will discuss the ignition requirements and gain curves starting from simple models and then describe how these are modified, as more detailed physics understanding is included. The critical design issues revolve around two questions: How can the compressed fuel be efficiently assembled? And how can power from the driver be delivered efficient...

174 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an approach to fusion that relies on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion is presented.
Abstract: Inertial confinement fusion (ICF) is an approach to fusion that relies on the inertia of the fuel mass to provide confinement. To achieve conditions under which inertial confinement is sufficient for efficient thermonuclear burn, a capsule (generally a spherical shell) containing thermonuclear fuel is compressed in an implosion process to conditions of high density and temperature. ICF capsules rely on either electron conduction (direct drive) or x rays (indirect drive) for energy transport to drive an implosion. In direct drive, the laser beams (or charged particle beams) are aimed directly at a target. The laser energy is transferred to electrons by means of inverse bremsstrahlung or a variety of plasma collective processes. In indirect drive, the driver energy (from laser beams or ion beams) is first absorbed in a high‐Z enclosure (a hohlraum), which surrounds the capsule. The material heated by the driver emits x rays, which drive the capsule implosion. For optimally designed targets, 70%–80% of the d...

2,121 citations

Journal ArticleDOI
30 Sep 2004-Nature
TL;DR: High-resolution energy measurements of the electron beams produced from intense laser–plasma interactions are reported, showing that—under particular plasma conditions—it is possible to generate beams of relativistic electrons with low divergence and a small energy spread.
Abstract: High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators.

1,739 citations

Journal ArticleDOI
TL;DR: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest priority prerequisite for proceeding with construction of an ignition-scale laser facility as mentioned in this paper.
Abstract: The 1990 National Academy of Science final report of its review of the Inertial Confinement Fusion Program recommended completion of a series of target physics objectives on the 10-beam Nova laser at the Lawrence Livermore National Laboratory as the highest-priority prerequisite for proceeding with construction of an ignition-scale laser facility, now called the National Ignition Facility (NIF). These objectives were chosen to demonstrate that there was sufficient understanding of the physics of ignition targets that the laser requirements for laboratory ignition could be accurately specified. This research on Nova, as well as additional research on the Omega laser at the University of Rochester, is the subject of this review. The objectives of the U.S. indirect-drive target physics program have been to experimentally demonstrate and predictively model hohlraum characteristics, as well as capsule performance in targets that have been scaled in key physics variables from NIF targets. To address the hohlrau...

1,601 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment.
Abstract: An explanation for the energetic ions observed in the PetaWatt experiments is presented. In solid target experiments with focused intensities exceeding 1020 W/cm2, high-energy electron generation, hard bremsstrahlung, and energetic protons have been observed on the backside of the target. In this report, an attempt is made to explain the physical process present that will explain the presence of these energetic protons, as well as explain the number, energy, and angular spread of the protons observed in experiment. In particular, we hypothesize that hot electrons produced on the front of the target are sent through to the back off the target, where they ionize the hydrogen layer there. These ions are then accelerated by the hot electron cloud, to tens of MeV energies in distances of order tens of μm, whereupon they end up being detected in the radiographic and spectrographic detectors.

1,485 citations

Journal ArticleDOI
TL;DR: In this paper, a number of consequences of relativistic-strength optical fields are surveyed, including wakefield generation, a relativistically version of optical rectification, in which longitudinal field effects could be as large as the transverse ones.
Abstract: The advent of ultraintense laser pulses generated by the technique of chirped pulse amplification (CPA) along with the development of high-fluence laser materials has opened up an entirely new field of optics. The electromagnetic field intensities produced by these techniques, in excess of ${10}^{18}\phantom{\rule{0.3em}{0ex}}\mathrm{W}∕{\mathrm{cm}}^{2}$, lead to relativistic electron motion in the laser field. The CPA method is reviewed and the future growth of laser technique is discussed, including the prospect of generating the ultimate power of a zettawatt. A number of consequences of relativistic-strength optical fields are surveyed. In contrast to the nonrelativistic regime, these laser fields are capable of moving matter more effectively, including motion in the direction of laser propagation. One of the consequences of this is wakefield generation, a relativistic version of optical rectification, in which longitudinal field effects could be as large as the transverse ones. In addition to this, other effects may occur, including relativistic focusing, relativistic transparency, nonlinear modulation and multiple harmonic generation, and strong coupling to matter and other fields (such as high-frequency radiation). A proper utilization of these phenomena and effects leads to the new technology of relativistic engineering, in which light-matter interactions in the relativistic regime drives the development of laser-driven accelerator science. A number of significant applications are reviewed, including the fast ignition of an inertially confined fusion target by short-pulsed laser energy and potential sources of energetic particles (electrons, protons, other ions, positrons, pions, etc.). The coupling of an intense laser field to matter also has implications for the study of the highest energies in astrophysics, such as ultrahigh-energy cosmic rays, with energies in excess of ${10}^{20}\phantom{\rule{0.3em}{0ex}}\mathrm{eV}$. The laser fields can be so intense as to make the accelerating field large enough for general relativistic effects (via the equivalence principle) to be examined in the laboratory. It will also enable one to access the nonlinear regime of quantum electrodynamics, where the effects of radiative damping are no longer negligible. Furthermore, when the fields are close to the Schwinger value, the vacuum can behave like a nonlinear medium in much the same way as ordinary dielectric matter expanded to laser radiation in the early days of laser research.

1,459 citations