scispace - formally typeset
Search or ask a question
Author

Barbara Krajewska

Bio: Barbara Krajewska is an academic researcher from Jagiellonian University. The author has contributed to research in topics: Urease & Immobilized enzyme. The author has an hindex of 31, co-authored 49 publications receiving 4699 citations. Previous affiliations of Barbara Krajewska include Universidade Federal de Minas Gerais.
Topics: Urease, Immobilized enzyme, Membrane, Chitosan, Thiol

Papers
More filters
Journal ArticleDOI
TL;DR: A review of the literature on enzymes immobilized on chitin- and chitosan-based materials, covering the last decade, is presented in this paper, where one hundred fifty-eight papers on 63 immobilized enzymes for multiplicity of applications ranging from wine, sugar and fish industry, through organic compounds removal from wastewaters to sophisticated biosensors for both in situ measurements of environmental pollutants and metabolite control in artificial organs, are reviewed.

1,317 citations

Journal ArticleDOI
TL;DR: In this paper, a comparative analysis of the literature reports on the recent trends in the enzyme immobilization by adsorption is presented, where both carriers, carrier modifiers and procedures developed for effective adaption of the enzymes are discussed.
Abstract: Endowed with unparalleled high catalytic activity and selectivity, enzymes offer enormous potential as catalysts in practical applications. These applications, however, are seriously hampered by enzymes’ low thermal and chemical stabilities. One way to improve these stabilities is the enzyme immobilization. Among various tested methods of this process that make use of different enzyme-carrier interactions, immobilization by adsorption on solid carriers has appeared most common. According to these findings, in this review we present a comparative analysis of the literature reports on the recent trends in the immobilization of the enzymes by adsorption. This thorough study was prepared in order to provide a deeper understanding of the process. Both carriers, carrier modifiers and procedures developed for effective adsorption of the enzymes are discussed. The review may thus be helpful in choosing the right adsorption scheme for a given enzyme to achieve the improvement of its stability and activity for a specific application.

633 citations

Journal ArticleDOI
TL;DR: In this article, a review of the properties of urea amidohydrolases is presented, focusing on the functional and practical properties that can be customized and exploited in a diversity of important applications, notably medical, analytical, environmental and engineering.
Abstract: Ureases (urea amidohydrolases, EC 3.5.1.5) are a group of highly proficient enzymes, widely distributed in nature, whose catalytic function is to catalyze the hydrolysis of urea, its final products being carbonic acid and ammonia. The products and the resulting increase in pH of the reaction environment are consequential characteristics of the action of ureases. Apart from its natural significance, ureases-catalyzed hydrolysis of urea is important in that it has great potential for practical applications. In view of this importance, this article offers a review of the properties of the enzymes, where in addition to the established knowledge, the recent findings are presented. Special emphasis is put on the functional and practical properties of ureases that can be customized and exploited in a diversity of important applications, notably medical, analytical, environmental and engineering.

603 citations

Journal ArticleDOI
TL;DR: In this article, the authors look at how chitin/chitosan materials can contribute to the development of membrane-based processes, particularly to those classified as supportive of the sustainability of our life.

243 citations

Journal ArticleDOI
TL;DR: This study investigated the interactions of chitosan with selected lipids, cholesterol and fatty acids, the latter including saturated (stearic acid) and unsaturated (oleic, linolesic, alpha-linolenic) acids, and tentatively proposed a mechanism of the chitOSan action that includes both electrostatic and hydrophobic lipid-chitosans interactions as well as hydrogen bonding between them.

179 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Chitin is the second most important natural polymer in the world as mentioned in this paper, and the main sources of chitin are two marine crustaceans, shrimp and crabs, which are used for food, cosmetics, biomedical and pharmaceutical applications.

6,365 citations

Journal ArticleDOI
TL;DR: In this article, the basic building blocks are described, starting with the 20 amino acids and proceeding to polypeptides, polysaccharides, and polyprotein-saccharide.

2,074 citations

Journal ArticleDOI
TL;DR: An overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented and emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).
Abstract: In this tutorial review, an overview of the why, what and how of enzyme immobilisation for use in biocatalysis is presented. The importance of biocatalysis in the context of green and sustainable chemicals manufacture is discussed and the necessity for immobilisation of enzymes as a key enabling technology for practical and commercial viability is emphasised. The underlying reasons for immobilisation are the need to improve the stability and recyclability of the biocatalyst compared to the free enzyme. The lower risk of product contamination with enzyme residues and low or no allergenicity are further advantages of immobilised enzymes. Methods for immobilisation are divided into three categories: adsorption on a carrier (support), encapsulation in a carrier, and cross-linking (carrier-free). General considerations regarding immobilisation, regardless of the method used, are immobilisation yield, immobilisation efficiency, activity recovery, enzyme loading (wt% in the biocatalyst) and the physical properties, e.g. particle size and density, hydrophobicity and mechanical robustness of the immobilisate, i.e. the immobilised enzyme as a whole (enzyme + support). The choice of immobilisate is also strongly dependent on the reactor configuration used, e.g. stirred tank, fixed bed, fluidised bed, and the mode of downstream processing. Emphasis is placed on relatively recent developments, such as the use of novel supports such as mesoporous silicas, hydrogels, and smart polymers, and cross-linked enzyme aggregates (CLEAs).

2,013 citations

Journal ArticleDOI
TL;DR: A review of the use of chitosan and its grafted and crosslinked derivatives for dye removal from aqueous solutions can be found in this paper, which summarizes the key advances and results that have been obtained in their decolorizing application as biosorbents.

1,974 citations

Journal ArticleDOI
TL;DR: In this article, a review of the recent developments in the synthesis of adsorbents containing polysaccharides, in particular modified biopolymers derived from chitin, chitosan, starch and cyclodextrin, is presented.

1,939 citations