scispace - formally typeset
Search or ask a question
Author

Bárbara Pérez-Köhler

Other affiliations: Carlos III Health Institute
Bio: Bárbara Pérez-Köhler is an academic researcher from University of Alcalá. The author has contributed to research in topics: Cyanoacrylate & Hernia repair. The author has an hindex of 14, co-authored 48 publications receiving 579 citations. Previous affiliations of Bárbara Pérez-Köhler include Carlos III Health Institute.

Papers
More filters
Journal ArticleDOI
20 Jun 2016-PLOS ONE
TL;DR: The CAs promoted proper mesh fixation and have potential to replace traditional suturing techniques in hernia repair; the CAs exhibited good tissue integration and effective short-term biocompatibility, with the slightest seroma and macrophage response induced by OCA.
Abstract: Background Cyanoacrylate(CA)-based tissue adhesives, although not widely used, are a feasible option to fix a mesh during abdominal hernia repair, due to its fast action and great bond strength. Their main disadvantage, toxicity, can be mitigated by increasing the length of their alkyl chain. The objective was to assess the in vitro cytotoxicity and in vivo biocompatibility in hernia repair of CAs currently used in clinical practice (Glubran(n-butyl) and Ifabond(n-hexyl)) and a longer-chain CA (OCA(n-octyl)), that has never been used in the medical field.

72 citations

Journal ArticleDOI
TL;DR: The use of polymer coatings that slowly release non-antibiotic drugs seems to be a good strategy to prevent implant contamination and reduce the onset of resistant bacterial strains.
Abstract: Background: The use of a prosthetic mesh to repair a tissue defect may produce a series of post-operative complications, among which infection is the most feared and one of the most devastating. When occurring, bacterial adherence and biofilm formation on the mesh surface affect the implant's tissue integration and host tissue regeneration, making preventive measures to control prosthetic infection a major goal of prosthetic mesh improvement. Methods: This article reviews the literature on the infection of prosthetic meshes used in hernia repair to describe the in vitro and in vivo models used to examine bacterial adherence and biofilm formation on the surface of different biomaterials. Also discussed are the prophylactic measures used to control implant infection ranging from meshes soaked in antibiotics to mesh coatings that release antimicrobial agents in a controlled manner. Results: Prosthetic architecture has a direct effect on bacterial adherence and biofilm formation. Absorbable synthetic...

71 citations

Journal ArticleDOI
TL;DR: Results show that HWJSC are able to efficiently transdifferentiate towards Tr‐ELC at the phenotypical level following a hierarchical pattern of gene activation, with an earlier induction of morphological and phenotypesical genes.
Abstract: Human Wharton's jelly stem cells (HWJSC) emerged as a potential source of viable cells for use in tissue engineering. In this work, we have analyzed the transdifferentiation capabilities of HWJSC towards transdifferentiated endothelial-like cells (Tr-ELC) in order to establish the potential usefulness of these cells in vascular tissue engineering. Our results show that Tr-ELC became more polygonal and less proliferative than HWJSC, resembling the structure and proliferation rate of the endothelial cells. In addition, the markers of mesenchymal undifferentiation CD9, E-cad, PODXL, and SSEA-4 are downregulated in Tr-ELC, suggesting that these cells can be in the process of adult differentiation. Besides, RT-PCR and microarray analyses revealed that some genes with a role in defining the endothelial phenotype and structure are upregulated (VEGF-R1, EDF1, AAMP, CD31, CD34, CDH5, and ICAM2) or downregulated (VEGF) in Tr-ELC, although a number of genes related to relevant endothelial cell functions (CD36, ECE2, VWF, THBD, PGI2, ECE1, and ACE) did not change or were only partially induced. All this implies that HWJSC are able to efficiently transdifferentiate towards Tr-ELC at the phenotypical level following a hierarchical pattern of gene activation, with an earlier induction of morphological and phenotypical genes.

58 citations

Journal ArticleDOI
TL;DR: In conclusion, IL‐15/IL‐15Rα signaling pathway is activated in skeletal muscle in response to a session of resistance exercise.
Abstract: In vitro and in vivo studies described the myokine IL-15 and its receptor IL-15Rα as anabolic/anti-atrophy agents, however, the protein expression of IL-15Rα has not been measured in human skeletal muscle and data regarding IL-15 expression remain inconclusive. The purpose of the study was to determine serum and skeletal muscle IL-15 and IL-15Rα responses to resistance exercise session and to analyze their association with myofibrillar protein synthesis (MPS). Fourteen participants performed a bilateral leg resistance exercise composed of four sets of leg press and four sets of knee extension at 75% 1RM to task failure. Muscle biopsies were obtained at rest, 0, 4 and 24 hours post-exercise and blood samples at rest, mid-exercise, 0, 0.3, 1, 2, 4 and 24 hours post-exercise. Serum IL-15 was increased by ~5.3-fold immediately post-exercise, while serum IL-15Rα decreased ~75% over 1 hour post-exercise (P<.001). Skeletal muscle IL-15Rα mRNA and protein expression were increased at 4 hours post-exercise by ~2-fold (P<.001) and ~1.3-fold above rest (P=.020), respectively. At 24 hours post-exercise, IL-15 (P=.003) and IL-15Rα mRNAs increased by ~2-fold (P=.002). Myofibrillar fractional synthetic rate between 0-4 hours was associated with IL-15Rα mRNA at rest (r=.662, P=.019), 4 hours (r=.612, P=.029), and 24 hours post-exercise (r=.627, P=.029). Finally, the muscle IL-15Rα protein up-regulation was related to Leg press 1RM (r=.688, P=.003) and total weight lifted (r=.628, P=.009). In conclusion, IL-15/IL-15Rα signaling pathway is activated in skeletal muscle in response to a session of resistance exercise.

45 citations

Journal ArticleDOI
TL;DR: Human umbilical cord Wharton's jelly stem cells (HWJSCs) are gaining attention as a possible clinical source of mesenchymal stem cells for cell therapy and tissue engineering due to their high accessibility, expansion potential, and plasticity.
Abstract: Human umbilical cord Wharton's jelly stem cells (HWJSCs) are gaining attention as a possible clinical source of mesenchymal stem cells for cell therapy and tissue engineering due to their high accessibility, expansion potential, and plasticity. We employed a combination of highly sensitive techniques to determine the average cell viability levels and proliferation capabilities of 10 consecutive cell passages of cultured HWJSCs and then used RNA microarrays to identify genes associated with changes in cell viability levels. We found an initial decrease in cell viability from the first to the third cell passage followed by an increase until the sixth passage and a final decrease from the sixth to tenth cell passages. The highest cell viability levels corresponded to the fifth and sixth passages. The intracellular ionic contents of potassium, sodium, and chlorine suggest that the lower cell viability levels at passages 2, 3, and 8–10 may be associated with apoptotic cell death. In fact, gene expression analy...

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Review of the literature showed that phytochemicals represent a possible source of effective, cheap and safe antimicrobial agents, though much work must still be carried out, especially in in vivo conditions to ensure the selection of effective antimicrobial substances with low side and adverse effects.

375 citations

Journal ArticleDOI
TL;DR: This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UC SCs, BMSCs, and iPSCs in regenerative medicine and discusses stem cells regenerative application in wildlife conservation.
Abstract: Regenerative medicine, the most recent and emerging branch of medical science, deals with functional restoration of tissues or organs for the patient suffering from severe injuries or chronic disease. The spectacular progress in the field of stem cell research has laid the foundation for cell based therapies of disease which cannot be cured by conventional medicines. The indefinite self-renewal and potential to differentiate into other types of cells represent stem cells as frontiers of regenerative medicine. The transdifferentiating potential of stem cells varies with source and according to that regenerative applications also change. Advancements in gene editing and tissue engineering technology have endorsed the ex vivo remodelling of stem cells grown into 3D organoids and tissue structures for personalized applications. This review outlines the most recent advancement in transplantation and tissue engineering technologies of ESCs, TSPSCs, MSCs, UCSCs, BMSCs, and iPSCs in regenerative medicine. Additionally, this review also discusses stem cells regenerative application in wildlife conservation.

366 citations

Journal ArticleDOI
TL;DR: The ability to modulate immune responses makes hWJSCs an important compatible stem cell source for transplantation therapy in allogeneic settings without immunorejection and provides a foundation for future functional studies where the exact mechanisms of these unique properties of hW JSCs can be confirmed.
Abstract: The human umbilical cord that originates from the embryo is an extra-embryonic membrane and the Wharton’s jelly within it is a rich source of stem cells (hWJSCs). It is not definitely known whether these cells behave as human embryonic stem cells (hESCs), human mesenchymal stem cells (hMSC) or both. They have the unique properties of high proliferation rates, wide multipotency, hypoimmunogenicity, do not induce teratomas and have anticancer properties. These advantages are important considerations for their use in cell based therapies and treatment of cancers. In a search for properties that confer these advantages we compared a detailed transcriptome profiling of hWJSCs using DNA microarrays with that of a panel of known hESCs, hMSCs and stromal cells. hWJSCs expressed low levels of the pluripotent embryonic stem cell markers including POUF1, NANOG, SOX2 and LIN28, thus explaining why they do not produce teratomas. Several cytokines were significantly upregulated in hWJSCs including IL12A which is associated with the induction of apoptosis, thus explaining their anticancer properties. When GO Biological Process analysis was compared between the various stem cell types, hWJSCs showed an increased expression of genes associated with the immune system, chemotaxis and cell death. The ability to modulate immune responses makes hWJSCs an important compatible stem cell source for transplantation therapy in allogeneic settings without immunorejection. The data in the present study which is the first detailed report on hWJSC transcriptomes provide a foundation for future functional studies where the exact mechanisms of these unique properties of hWJSCs can be confirmed.

298 citations

Journal ArticleDOI
TL;DR: Considering their protective action in lesioned sites, MSCs’ secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutic strategies in human clinical trials.
Abstract: The low regeneration potential of the central nervous system (CNS) represents a challenge for the development of new therapeutic strategies. Mesenchymal stem cells (MSCs) have been proposed as a possible therapeutic tool for CNS disorders. In addition to their differentiation potential, it is well accepted nowadays that their beneficial actions can also be mediated by their secretome. Indeed, it was already demonstrated, both in vitro and in vivo, that MSCs are able to secrete a broad range of neuroregulatory factors that promote an increase in neurogenesis, inhibition of apoptosis and glial scar formation, immunomodulation, angiogenesis, neuronal and glial cell survival, as well as relevant neuroprotective actions on different pathophysiological contexts. Considering their protective action in lesioned sites, MSCs’ secretome might also improve the integration of local progenitor cells in neuroregeneration processes, opening a door for their future use as therapeutical strategies in human clinical trials. Thus, in this review we analyze the current understanding of MSCs secretome as a new paradigm for the treatment of CNS neurodegenerative diseases.

272 citations

Journal ArticleDOI
TL;DR: Stem cells derived directly from the uncontaminated Wharton’s jelly (hWJSCs) appear to offer the best clinical utility because of their unique beneficial properties and are attractive autologous or allogeneic agents for the treatment of malignant and non-malignant hematopoietic andnon-hematopoetic diseases.
Abstract: Mesenchymal stem cells (MSCs) from bone marrow, adult organs and fetuses face the disadvantages of invasive isolation, limited cell numbers and ethical constraints while embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) face the clinical hurdles of potential immunorejection and tumorigenesis respectively. These challenges have prompted interest in the study and evaluation of stem cells from birth-associated tissues. The umbilical cord (UC) has been the most popular. Hematopoietic stem cells (HSCs) harvested from cord blood have been successfully used for the treatment of hematopoietic diseases. Stem cell populations have also been reported in other compartments of the UC viz., amnion, subamnion, perivascular region, Wharton’s jelly, umbilical blood vessel adventia and endothelium. Differences in stemness characteristics between compartments have been reported and hence derivation protocols using whole UC pieces containing all compartments yield mixed stem cell populations with varied characteristics. Stem cells derived directly from the uncontaminated Wharton’s jelly (hWJSCs) appear to offer the best clinical utility because of their unique beneficial properties. They are non-controversial, can be harvested painlessly in abundance, proliferative, possess stemness properties that last several passages in vitro, multipotent, hypoimmunogenic and do not induce tumorigenesis even though they have some ESC markers. hWJSCs and its extracts (conditioned medium and lysate) also possess anti-cancer properties and support HSC expansion ex vivo. They are thus attractive autologous or allogeneic agents for the treatment of malignant and non-malignant hematopoietic and non-hematopoietic diseases. This review critically evaluates their therapeutic value, the challenges and future directions for their clinical application.

190 citations