scispace - formally typeset
Search or ask a question
Author

Barbara Vu

Bio: Barbara Vu is an academic researcher from Swinburne University of Technology. The author has contributed to research in topics: Extracellular polymeric substance & Biofilm matrix. The author has an hindex of 2, co-authored 2 publications receiving 833 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation and a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.
Abstract: Extracellular polymeric substances (EPS) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

937 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed and verified a "cold" microwave treatment that could lead to the inactivation of two common pathogenic species of bacteria, Escherichia coli and Staphylococcus aureus, in raw meats.
Abstract: The present study developed and verified a ‘cold’ microwave (MW) treatment that could lead to the inactivation of two common pathogenic species of bacteria, Escherichia coli and Staphylococcus aureus, in raw meats. A number of experimental conditions were designed and tested to maximise MW exposure without overheating the samples. The non-thermal effect was maximised by multiple exposure to attain efficient MW threshold intensities. It was shown that at sub-lethal temperatures repeated exposure using high frequency MW radiation was significantly more effective in decontaminating bacteria in raw meats compared to a single exposure. It was concluded that non thermal inactivation of pathogenic bacteria in raw meats could be achieved at defined conditions using high frequency MW radiation.

35 citations


Cited by
More filters
Book ChapterDOI
TL;DR: An overview of the current knowledge on mineral-organic associations can be found in this article, where the authors identify key questions and future research needs, as well as a survey of the existing research work.
Abstract: Minerals and organic matter (OM) may form intricate associations via myriad interactions. In soils, the associations of OM with mineral surfaces are mainly investigated because of their role in determining the long-term retention of OM. OM “must decay in order to release the energy and nutrients that drive live processes all over the planet” ( Janzen, 2006 ). Thus, the processes and mechanisms that retain OM in soil are a central concern to very different branches of environmental research. An agronomist may want to synchronize periods of high nutrient and energy release with the growth stages of a crop. An environmental chemist may wish to either immobilize an organic soil contaminant or enhance its decomposition into less harmful metabolites, while climate scientists need to understand the processes that mediate the production of potent greenhouse gases from decomposing OM. Associations of OM with pedogenic minerals (henceforth termed mineral–organic associations (MOAs)) are known to be key controls in these and many other processes. Here we strive to present an overview of the current knowledge on MOAs and identify key questions and future research needs.

818 citations

Journal ArticleDOI
TL;DR: This review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS.

709 citations

Journal ArticleDOI
01 Jul 2011-Science
TL;DR: It is demonstrated that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete 34S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle, suggesting similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth’s surface environment during the Proterozoic.
Abstract: The composition of sulfur isotopes in sedimentary sulfides and sulfates traces the sulfur cycle throughout Earth’s history. In particular, depletions of sulfur-34 (34S) in sulfide relative to sulfate exceeding 47 per mil (‰) often serve as a proxy for the disproportionation of intermediate sulfur species in addition to sulfate reduction. Here, we demonstrate that a pure, actively growing culture of a marine sulfate-reducing bacterium can deplete 34S by up to 66‰ during sulfate reduction alone and in the absence of an extracellular oxidative sulfur cycle. Therefore, similar magnitudes of sulfur isotope fractionation in sedimentary rocks do not unambiguously record the presence of other sulfur-based metabolisms or the stepwise oxygenation of Earth’s surface environment during the Proterozoic.

485 citations

Journal ArticleDOI
TL;DR: A biophysical model of the interactions between bacterial cells and cicada wing surface structures is proposed, and it is shown that mechanical properties are key factors in determining bacterial resistance/sensitivity to the bactericidal nature of the wing surface.

482 citations

Journal ArticleDOI
TL;DR: The occurrence and distribution of microbes that are involved in the degradation of both natural and synthetic polymers are described and it seems that biological agents and their metabolic enzymes can be exploited as a potent tool for polymer degradation.
Abstract: Inertness and the indiscriminate use of synthetic polymers leading to increased land and water pollution are of great concern. Plastic is the most useful synthetic polymer, employed in wide range of applications viz. the packaging industries, agriculture, household practices, etc. Unpredicted use of synthetic polymers is leading towards the accumulation of increased solid waste in the natural environment. This affects the natural system and creates various environmental hazards. Plastics are seen as an environmental threat because they are difficult to degrade. This review describes the occurrence and distribution of microbes that are involved in the degradation of both natural and synthetic polymers. Much interest is generated by the degradation of existing plastics using microorganisms. It seems that biological agents and their metabolic enzymes can be exploited as a potent tool for polymer degradation. Bacterial and fungal species are the most abundant biological agents found in nature and have distinct degradation abilities for natural and synthetic polymers. Among the huge microbial population associated with polymer degradation, Pseudomonas aeruginosa, Pseudomonas stutzeri, Streptomyces badius, Streptomyces setonii, Rhodococcus ruber, Comamonas acidovorans, Clostridium thermocellum and Butyrivibrio fibrisolvens are the dominant bacterial species. Similarly, Aspergillus niger, Aspergillus flavus, Fusarium lini, Pycnoporus cinnabarinus and Mucor rouxii are prevalent fungal species.

435 citations