scispace - formally typeset
Search or ask a question
Author

Barış Ata Borsa

Bio: Barış Ata Borsa is an academic researcher from Linköping University. The author has contributed to research in topics: Antibiotics & Nanocapsules. The author has an hindex of 6, co-authored 20 publications receiving 230 citations. Previous affiliations of Barış Ata Borsa include Istanbul University & Istanbul Kemerburgaz University.

Papers
More filters
Journal ArticleDOI
TL;DR: A fast, specific and sensitive homogeneous assay for Staphylococcus aureus detection was developed by measuring the activity of secreted nuclease from the bacteria via a modified DNA oligonucleotide, formed by nucleic acid oligos and magnetic or mesoporous silica nanoparticles.

68 citations

Journal ArticleDOI
TL;DR: Aptamer-gates caused a specific decrease in minimum inhibitory concentration values of vancomycin for Staphylococcus aureus when mesoporous silica nanoparticles (MSNs) were used for bacteria-targeted delivery.

62 citations

Journal ArticleDOI
TL;DR: In this paper, mesoporous silicon oxycarbide (SiOC) components were formed with the use of "molecular spacer" (a sacrificial vinyl-terminated linear siloxane which while decomposing during pyrolysis generates pores with size proportional to the molecular weight), followed by a post-pyrolyisation etching treatment by hydrofluoric acid (HF) to obtain C-rich SiOC samples having additional micro-/mesoporosity and specific surface area reaching to 774m2/g.

42 citations

Journal ArticleDOI
01 Aug 2014-Anaerobe
TL;DR: It is proposed that the production of probiotics in accordance with country-specific Bifidobacterium species densities would improve public health and country- specific prospective case-control studies that collect broad data sets are needed.

39 citations

Journal ArticleDOI
TL;DR: Teicoplanin delivery nanoparticles of Poly Lactic-co-Glycolic Acid (PLGA), which are functionalized with S. aureus specific aptamers, can be an attractive alternative to combat with some of the multi-drug resistant bacterial pathogens.
Abstract: Emergence of resistance to traditional antibiotic treatments necessitates alternative delivery systems. Teicoplanin is a glycopeptide antibiotic used in the treatments of serious infections caused by Gram-positive bacteria, including Methicillin Resistant Staphylococcus aureus (MRSA). One strategy to keep up with antibiotic resistance development is to limit dose and amount during treatments. Targeted delivery systems of antibiotics have been suggested as a mechanism to slow-down the evolution of resistance and to increase efficiency of the antimicrobials on already resistant pathogens. In this study, we report teicoplanin delivery nanoparticles of Poly Lactic-co-Glycolic Acid (PLGA), which are functionalized with S. aureus specific aptamers. A 32-fold decrease in minimum inhibitory concentration (MIC) values of teicoplanin for S. aureus was demonstrated for susceptible strains and about 64-fold decline in MIC value was achieved for moderately resistant clinical isolates of MRSA upon teicoplanin treatment with aptamer-PLGA nanoparticles. Although teicoplanin delivery in PLGA nanoparticles without targeting demonstrated eightfold decrease in MIC of susceptible strains of S. aureus and S. epidermidis and twofold in MIC of resistant strains, the aptamer targeting specifically decreased MIC for S. aureus, but not for S. epidermidis. Therefore, aptamer-targeted PLGA delivery of antibiotic can be an attractive alternative to combat with some of the multi-drug resistant bacterial pathogens.

26 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Although the gut–lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.
Abstract: The microbiota is vital for the development of the immune system and homeostasis. Changes in microbial composition and function, termed dysbiosis, in the respiratory tract and the gut have recently been linked to alterations in immune responses and to disease development in the lungs. In this Opinion article, we review the microbial species that are usually found in healthy gastrointestinal and respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although the gut-lung axis is only beginning to be understood, emerging evidence indicates that there is potential for manipulation of the gut microbiota in the treatment of lung diseases.

830 citations

Journal ArticleDOI
TL;DR: The aim of this mini-review is to describe the bifidobacteria compositional changes associated with different stages in life, highlighting their beneficial role, as well as their presence or absence in many disease states.
Abstract: The intestinal microbiota has increasingly been shown to have a vital role in various aspects of human health. Indeed, several studies have linked alterations in the gut microbiota with the development of different diseases. Among the vast gut bacterial community, Bifidobacterium is a genus which dominates the intestine of healthy breast-fed infants whereas in adulthood the levels are lower but relatively stable. The presence of different species of bifidobacteria changes with age, from the childhood to old age. Bifidobacterium longum, Bifidobacterium breve and Bifidobacterium bifidum are generally dominant in infants whereas Bifidobacterium catenulatum, Bifidobacterium adolescentis and, as well as B. longum are more dominant in adults. Increasingly, evidence is accumulating which shows beneficial effect of supplementation with bifidobacteria for the improvement of human health conditions ranging from protection against infection to different extra- and intra-intestinal positive effects. Moreover, bifidobacteria can be associated with the production of a number of potentially health promoting metabolites including short chain fatty acids, conjugated linoleic acid and bacteriocins. The aim of this mini-review is to describe the bifidobacteria composition changes associated with different stages in life, highlighting their beneficial role, as well as their presence in commonly known disease states.

372 citations

Journal ArticleDOI
TL;DR: The current review summarizes recent progress over the last 2 years in the field of antibacterial nanodrugs, and describes their unique properties, mode of action and activity against MDR bacteria and biofilms.
Abstract: The spread of antibiotic resistance and increasing prevalence of biofilm-associated infections is driving demand for new means to treat bacterial infection. Nanotechnology provides an innovative platform for addressing this challenge, with potential to manage even infections involving multidrug-resistant (MDR) bacteria. The current review summarizes recent progress over the last 2 years in the field of antibacterial nanodrugs, and describes their unique properties, mode of action and activity against MDR bacteria and biofilms. Biocompatibility and commercialization are also discussed. As opposed to the more common division of nanoparticles (NPs) into organic- and inorganic-based materials, this review classifies NPs into two functional categories. The first includes NPs exhibiting intrinsic antibacterial properties and the second is devoted to NPs serving as a cargo for delivering antibacterial agents. Antibacterial nanomaterials used to decorate medical devices and implants are reviewed here as well.

173 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current state of the art concerning the synthesis, processing, and various structural and functional properties of silicon-oxycarbide-based glasses and glass-ceramics is done.
Abstract: Silicon oxycarbides can be considered as being carbon‐containing silicates consisting of glass networks in which oxygen and carbon share bonds with silicon. The carbon‐for‐oxygen substitution in silicate glass networks has been shown to induce significant changes in the network connectivity and consequently strong improvements in the properties of the silicate glass network. For instance, SiOC glasses exhibit Young's moduli, hardness values, glass transition, and crystallization temperatures which are superior to those of vitreous silica. Moreover, the silicon oxycarbide glass network exhibits unique structural features such as reduced mass fractal dimension and nano‐heterogeneity, which significantly affect and/or dictate its properties and behavior. In the present Review, a consideration of the current state of the art concerning the synthesis, processing, and various structural and functional properties of silicon‐oxycarbide‐based glasses and glass‐ceramics is done. Thus, the synthesis of silicon oxycarbides starting from macromolecular precursors such as polysiloxanes or alkoxysilanes‐based sol‐gel systems as well as current advances related to their processing will be critically reviewed. In addition, various structural and functional properties of silicon oxycarbides are presented. Specific emphasis will be put on the intimate correlation between the molecular architecture of the precursors and the structural features and properties of the resulting silicon oxycarbides.

170 citations