scispace - formally typeset
Search or ask a question
Author

Barrett S. Baldwin

Bio: Barrett S. Baldwin is an academic researcher from Ames Research Center. The author has contributed to research in topics: Turbulence & Boundary layer. The author has an hindex of 5, co-authored 6 publications receiving 842 citations.

Papers
More filters
Proceedings ArticleDOI
07 Jan 1991
TL;DR: In this article, a one-equation turbulence model that avoids the need for an algebraic length scale is derived from a simplified form of the standard k-epsilon model equations.
Abstract: A one-equation turbulence model that avoids the need for an algebraic length scale is derived from a simplified form of the standard k-epsilon model equations. After calibration based on well established properties of the flow over a flat plate, predictions of several other flows are compared with experiment. The preliminary results presented indicate that the model has predictive and numerical properties of sufficient interest to merit further investigation and refinement. The one-equation model is also analyzed numerically and robust solution methods are presented.

573 citations

Book ChapterDOI
01 Jan 1989
TL;DR: In this paper, the turbulent boundary layer under a freestream velocity that varies sinusoidally in time around a zero mean is considered, and a theory for the velocity and stress profiles at high Reynolds number is formulated.
Abstract: The turbulent boundary layer under a freestream velocity that varies sinusoidally in time around a zero mean is considered. The flow has a rich variety of behaviors including strong pressure gradients, inflection points in the velocity profile, and reversal of the shear stress. A theory for the velocity- and stress profiles at high Reynolds number is formulated. Well-resolved direct Navier-Stokes simulations are conducted over a narrow range of Reynolds numbers. The flow is also computed over a wider range of Reynolds numbers using a new algebraic turbulence model. The results produced by the three approaches and by experiments are compared. Detailed phase-averaged statistical results from the direct simulations are provided to assist turbulence-model development.

116 citations

01 Aug 1990
TL;DR: In this paper, a one-equation turbulence model that avoids the need for an algebraic length scale is derived from a simplified form of the standard k-epsilon model equations.
Abstract: A one-equation turbulence model that avoids the need for an algebraic length scale is derived from a simplified form of the standard k-epsilon model equations. After calibration based on well established properties of the flow over a flat plate, predictions of several other flows are compared with experiment. The preliminary results presented indicate that the model has predictive and numerical properties of sufficient interest to merit further investigation and refinement. The one-equation model is also analyzed numerically and robust solution methods are presented.

79 citations

Journal ArticleDOI
TL;DR: In this paper, a study of the propagation of acoustic waves in a semi-infinite expanse of radiating gas on one side of an infinite, plane, radiating wall is made, in particular for the case of sinusoidal oscillations in position and temperature of the wall.
Abstract: A study is made of the propagation of acoustic waves in a semi-infinite expanse of radiating gas on one side of an infinite, plane, radiating wall. A solution is found, in particular, for the case of sinusoidal oscillations in both position and temperature of the wall. The solution is based on a single linear integro-differential equation that plays the same role here as does the classical wave equation in equilibrium acoustic theory. The solution is applicable throughout the range from a completely transparent to a completely opaque gas and from very low to very high temperatures. The solution appears, in general, as the sum of two types of travelling waves: (1) an essentially classical sound-wave, but with a slightly altered speed and a small amount of damping and (2) a radiation-induced wave whose speed and damping may be either large or small, depending on the temperature and absorptivity of the gas. Since the waves are coupled, both types will usually be present together, even in the special cases of pure motion or pure temperature variation of the wall.

62 citations

01 Jan 1987
TL;DR: In this paper, the turbulent boundary layer under a freestream velocity that varies sinusoidally in time around a zero mean is considered, and a theory for the velocity and stress profiles at high Reynolds number is formulated.
Abstract: The turbulent boundary layer under a freestream velocity that varies sinusoidally in time around a zero mean is considered. The flow has a rich variety of behaviors including strong pressure gradients, inflection points in the velocity profile, and reversal of the shear stress. A theory for the velocity- and stress profiles at high Reynolds number is formulated. Well-resolved direct Navier-Stokes simulations are conducted over a narrow range of Reynolds numbers. The flow is also computed over a wider range of Reynolds numbers using a new algebraic turbulence model. The results produced by the three approaches and by experiments are compared. Detailed phase-averaged statistical results from the direct simulations are provided to assist turbulence-model development.

23 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors discuss the many levels possible for the numerical prediction of a turbulent flow, the target being a complete airplane, turbine, or car, and their hope is to stimulate reflection, discussion, and planning.

1,264 citations

Journal ArticleDOI
TL;DR: An implicit, Navier-Stokes solution algorithm is presented for the computation of turbulent flow on unstructured grids using an upwind algorithm and a backward-Euler time-stepping scheme.

838 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review of wind turbine aeroelasticity is given, starting with the simple aerodynamic Blade Element Momentum Method and ending with giving a review of the work done applying CFD on wind turbine rotors.

618 citations

01 Apr 1997
TL;DR: In this paper, the authors provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results, including free shear flows, boundary layer flows, and axisymmetric shockwave/boundary layer interaction.
Abstract: The primary objective of this work is to provide accurate numerical solutions for selected flow fields and to compare and evaluate the performance of selected turbulence models with experimental results. Four popular turbulence models have been tested and validated against experimental data often turbulent flows. The models are: (1) the two-equation k-epsilon model of Wilcox, (2) the two-equation k-epsilon model of Launder and Sharma, (3) the two-equation k-omega/k-epsilon SST model of Menter, and (4) the one-equation model of Spalart and Allmaras. The flows investigated are five free shear flows consisting of a mixing layer, a round jet, a plane jet, a plane wake, and a compressible mixing layer; and five boundary layer flows consisting of an incompressible flat plate, a Mach 5 adiabatic flat plate, a separated boundary layer, an axisymmetric shock-wave/boundary layer interaction, and an RAE 2822 transonic airfoil. The experimental data for these flows are well established and have been extensively used in model developments. The results are shown in the following four sections: Part A describes the equations of motion and boundary conditions; Part B describes the model equations, constants, parameters, boundary conditions, and numerical implementation; and Parts C and D describe the experimental data and the performance of the models in the free-shear flows and the boundary layer flows, respectively.

607 citations

Journal ArticleDOI
TL;DR: In this paper, the free-stream flow is a purely oscillating flow with sinusoidal velocity variation, and mean and turbulence properties were measured mainly in two directions, namely in the streamwise direction and in the direction perpendicular to the bed.
Abstract: This study deals with turbulent oscillatory boundary-layer flows over both smooth and rough beds. The free-stream flow is a purely oscillating flow with sinusoidal velocity variation. Mean and turbulence properties were measured mainly in two directions, namely in the streamwise direction and in the direction perpendicular to the bed. Some measurements were made also in the transverse direction. The measurements were carried out up to Re = 6 × 106 over a mirror-shine smooth bed and over rough beds with various values of the parameter a/ks covering the range from approximately 400 to 3700, a being the amplitude of the oscillatory free-stream flow and ks the Nikuradse's equivalent sand roughness. For smooth-bed boundary-layer flows, the effect of Re is discussed in greater detail. It is demonstrated that the boundary-layer properties change markedly with Re. For rough-bed boundary-layer flows, the effect of the parameter a/ks is examined, at large values (O(103)) in combination with large Re.

558 citations