scispace - formally typeset
Search or ask a question
Author

Bart De Tobel

Bio: Bart De Tobel is an academic researcher from Vrije Universiteit Brussel. The author has contributed to research in topics: Transition metal & Catalysis. The author has co-authored 1 publications.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors used linear scaling relationships and molecular volcano plots to assess the potential of the alkaline earth (Ae) metal-based catalysts for the hydrogenation of alkenes.
Abstract: Recent advances in alkaline earth (Ae) metal hydrogenation catalysis have broadened the spectrum of potential catalysts to include candidates from the main group, providing a sustainable alternative to the commonly used transition metals. Although Ae-amides have already been demonstrated to catalyze hydrogenation of imines and alkenes, a lucid understanding of how different metal/ligand combinations influence the catalytic activity is yet to be established. In this article, we use linear scaling relationships and molecular volcano plots to assess the potential of the Ae metal-based catalysts for the hydrogenation of alkenes. By analyzing combinations of eight metals (mono-, bi-, tri-, and tetravalent) and seven ligands, we delineate the impact of metal-ligand interplay on the hydrogenation activity. Our findings highlight that the catalytic activity is majorly determined by the charge and the size of the metal ions. While bivalent Ae metal cations delicately regulate the binding and the release of the reactants and the products, respectively, providing the right balance for this reaction, ligands play only a minor role in determining their catalytic activity. We show how volcano plots can be utilized for the rapid screening of prospective Ae catalysts to establish a guideline to achieve maximum activity in facilitating the hydrogenation process.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , a Cp*RhIII-catalyzed reaction of alkenes with Nenoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2-trifluoroethanol (TFE).
Abstract: Abstract Group 9 metals, in particular RhIII complexes with cyclopentadienyl ligands, are competent C−H activation catalysts. Recently, a Cp*RhIII‐catalyzed reaction of alkenes with N‐enoxyphthalimides showed divergent outcome based on the solvent, with carboamination favored in methanol and cyclopropanation in 2,2,2‐trifluoroethanol (TFE). Here, we create selectivity and activity maps capable of unravelling the catalyst‐solvent interplay on the outcome of these competing reactions by analyzing 42 cyclopentadienyl metal catalysts, CpXMIII (M=Co, Rh, Ir). These maps not only can be used to rationalize previously reported experimental results, but also capably predict the behavior of untested catalyst/solvent combinations as well as aid in identifying experimental protocols that simultaneously optimize both catalytic activity and selectivity (solutions in the Pareto front). In this regard, we demonstrate how and why the experimentally employed Cp*RhIII catalyst represents an ideal choice to invoke a solvent‐induced change in reactivity. Additionally, the maps reveal the degree to which even perceived minor changes in the solvent (e. g., replacing methanol with ethanol) influence the ratio of carboamination and cyclopropanation products. Overall, the selectivity and activity maps presented here provide a generalizable tool to create global pictures of anticipated reaction outcome that can be used to develop new experimental protocols spanning metal, ligand, and solvent space.

1 citations