scispace - formally typeset
Search or ask a question
Author

Bart Kranstauber

Bio: Bart Kranstauber is an academic researcher from University of Zurich. The author has contributed to research in topics: Animal track & Population. The author has an hindex of 23, co-authored 44 publications receiving 2604 citations. Previous affiliations of Bart Kranstauber include Kalahari Meerkat Project & University of Amsterdam.

Papers
More filters
Journal ArticleDOI
Marlee A. Tucker1, Katrin Böhning-Gaese1, William F. Fagan2, John M. Fryxell3, Bram Van Moorter, Susan C. Alberts4, Abdullahi H. Ali, Andrew M. Allen5, Andrew M. Allen6, Nina Attias7, Tal Avgar8, Hattie L. A. Bartlam-Brooks9, Buuveibaatar Bayarbaatar10, Jerrold L. Belant11, Alessandra Bertassoni12, Dean E. Beyer13, Laura R. Bidner14, Floris M. van Beest15, Stephen Blake10, Stephen Blake16, Niels Blaum17, Chloe Bracis1, Danielle D. Brown18, P J Nico de Bruyn19, Francesca Cagnacci20, Francesca Cagnacci21, Justin M. Calabrese22, Justin M. Calabrese2, Constança Camilo-Alves23, Simon Chamaillé-Jammes24, André Chiaradia25, André Chiaradia26, Sarah C. Davidson16, Sarah C. Davidson27, Todd E. Dennis28, Stephen DeStefano29, Duane R. Diefenbach30, Iain Douglas-Hamilton31, Iain Douglas-Hamilton32, Julian Fennessy, Claudia Fichtel33, Wolfgang Fiedler16, Christina Fischer34, Ilya R. Fischhoff35, Christen H. Fleming22, Christen H. Fleming2, Adam T. Ford36, Susanne A. Fritz1, Benedikt Gehr37, Jacob R. Goheen38, Eliezer Gurarie39, Eliezer Gurarie2, Mark Hebblewhite40, Marco Heurich41, Marco Heurich42, A. J. Mark Hewison43, Christian Hof, Edward Hurme2, Lynne A. Isbell14, René Janssen, Florian Jeltsch17, Petra Kaczensky44, Adam Kane45, Peter M. Kappeler33, Matthew J. Kauffman38, Roland Kays46, Roland Kays47, Duncan M. Kimuyu48, Flávia Koch33, Flávia Koch49, Bart Kranstauber37, Scott D. LaPoint16, Scott D. LaPoint50, Peter Leimgruber22, John D. C. Linnell, Pascual López-López51, A. Catherine Markham52, Jenny Mattisson, Emília Patrícia Medici53, Ugo Mellone54, Evelyn H. Merrill8, Guilherme Miranda de Mourão55, Ronaldo Gonçalves Morato, Nicolas Morellet43, Thomas A. Morrison56, Samuel L. Díaz-Muñoz57, Samuel L. Díaz-Muñoz14, Atle Mysterud58, Dejid Nandintsetseg1, Ran Nathan59, Aidin Niamir, John Odden, Robert B. O'Hara60, Luiz Gustavo R. Oliveira-Santos7, Kirk A. Olson10, Bruce D. Patterson61, Rogério Cunha de Paula, Luca Pedrotti, Björn Reineking62, Björn Reineking63, Martin Rimmler, Tracey L. Rogers64, Christer Moe Rolandsen, Christopher S. Rosenberry65, Daniel I. Rubenstein66, Kamran Safi67, Kamran Safi16, Sonia Saïd, Nir Sapir68, Hall Sawyer, Niels Martin Schmidt15, Nuria Selva69, Agnieszka Sergiel69, Enkhtuvshin Shiilegdamba10, João P. Silva70, João P. Silva71, João P. Silva72, Navinder J. Singh6, Erling Johan Solberg, Orr Spiegel14, Olav Strand, Siva R. Sundaresan, Wiebke Ullmann17, Ulrich Voigt44, Jake Wall32, David W. Wattles29, Martin Wikelski67, Martin Wikelski16, Christopher C. Wilmers73, John W. Wilson74, George Wittemyer32, George Wittemyer75, Filip Zięba, Tomasz Zwijacz-Kozica, Thomas Mueller1, Thomas Mueller22 
Goethe University Frankfurt1, University of Maryland, College Park2, University of Guelph3, Duke University4, Radboud University Nijmegen5, Swedish University of Agricultural Sciences6, Federal University of Mato Grosso do Sul7, University of Alberta8, Royal Veterinary College9, Wildlife Conservation Society10, Mississippi State University11, Sao Paulo State University12, Michigan Department of Natural Resources13, University of California, Davis14, Aarhus University15, Max Planck Society16, University of Potsdam17, Middle Tennessee State University18, Mammal Research Institute19, Edmund Mach Foundation20, Harvard University21, Smithsonian Conservation Biology Institute22, University of Évora23, University of Montpellier24, Parks Victoria25, Monash University26, Ohio State University27, Fiji National University28, University of Massachusetts Amherst29, United States Geological Survey30, University of Oxford31, Save the Elephants32, German Primate Center33, Technische Universität München34, Institute of Ecosystem Studies35, University of British Columbia36, University of Zurich37, University of Wyoming38, University of Washington39, University of Montana40, University of Freiburg41, Bavarian Forest National Park42, University of Toulouse43, University of Veterinary Medicine Vienna44, University College Cork45, North Carolina Museum of Natural Sciences46, North Carolina State University47, Karatina University48, University of Lethbridge49, Lamont–Doherty Earth Observatory50, University of Valencia51, Stony Brook University52, International Union for Conservation of Nature and Natural Resources53, University of Alicante54, Empresa Brasileira de Pesquisa Agropecuária55, University of Glasgow56, New York University57, University of Oslo58, Hebrew University of Jerusalem59, Norwegian University of Science and Technology60, Field Museum of Natural History61, University of Grenoble62, University of Bayreuth63, University of New South Wales64, Pennsylvania Game Commission65, Princeton University66, University of Konstanz67, University of Haifa68, Polish Academy of Sciences69, University of Lisbon70, University of Porto71, Instituto Superior de Agronomia72, University of California, Santa Cruz73, University of Pretoria74, Colorado State University75
26 Jan 2018-Science
TL;DR: Using a unique GPS-tracking database of 803 individuals across 57 species, it is found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in area with a low human footprint.
Abstract: Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.

719 citations

Journal ArticleDOI
TL;DR: This novel extension of the Brownian bridge movement model, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird and provides a useful one-dimensional measure of behavioural change along animal tracks.
Abstract: 1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks.

377 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a method to estimate activity level with time-of-detection data from camera traps, fitting a flexible circular distribution to these data to describe the underlying activity schedule, and calculating overall proportion of time active from this.
Abstract: Summary 1. Activity level (the proportion of time that animals spend active) is a behavioural and ecological metric that can provide an indicator of energetics, foraging effort and exposure to risk. However, activity level is poorly known for free-living animals because it is difficult to quantify activity in the field in a consistent, cost-effective and non-invasive way. 2. This article presents a new method to estimate activity level with time-of-detection data from camera traps (or more generally any remote sensors), fitting a flexible circular distribution to these data to describe the underlying activity schedule, and calculating overall proportion of time active from this. 3. Using simulations and a case study for a range of small- to medium-sized mammal species, we find that activity level can reliably be estimated using the new method. 4. The method depends on the key assumption that all individuals in the sampled population are active at the peak of the daily activity cycle. We provide theoretical and empirical evidence suggesting that this assumption is likely to be met for many species, but may be less likely met in large predators, or in high-latitude winters. Further research is needed to establish stronger evidence on the validity of this assumption in specific cases; however, the approach has the potential to provide an effective, non-invasive alternative to existing methods for quantifying population activity levels.

325 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a method to estimate the area effectively monitored by cameras, which is one of the most important codeterminants of detection rate, by applying detection function models to data on the position (distance and angle relative to the camera) where the animals are first detected.
Abstract: Summary 1. Abundance estimation is a pervasive goal in ecology. The rate of detection by motion-sensitive camera traps can, in principle, provide information on the abundance of many species of terrestrial vertebrates that are otherwise difficult to survey. The random encounter model (REM, Rowcliffe et al. 2008) provides a means estimating abundance from camera trap rate but requires camera sensitivity to be quantified. 2. Here, we develop a method to estimate the area effectively monitored by cameras, which is one of the most important codeterminants of detection rate. Our method borrows from distance sampling theory, applying detection function models to data on the position (distance and angle relative to the camera) where the animals are first detected. Testing the reliability of this approach through simulation, we find that bias depends on the effective detection angle assumed but was generally low at less than 5% for realistic angles typical of camera traps. 3. We adapted standard detection functions to allow for the possibility of smaller animals passing beneath the field of view close to the camera, resulting in reduced detection probability within that zone. Using a further simulation to test this approach, we find that detection distance can be estimated with little or no bias if detection probability is certain for at least some distance from the camera. 4. Applying this method to a 1-year camera trapping data set from Barro Colorado Island, Panama, we show that effective detection distance is related strongly positively to species body mass and weakly negatively to species average speed of movement. There was also a strong seasonal effect, with shorter detection distance during the wet season. Effective detection angle is related more weakly to species body mass, and again strongly to season, with a wider angle in the wet season. 5. This method represents an important step towards practical application of the REM, including abundance estimation for relatively small (<1 kg) species.

225 citations

Journal ArticleDOI
TL;DR: An animal movement data model is presented that is used within the Movebank web application to describe tracked animals and facilitates data comparisons across a broad range of taxa, study designs, and technologies.
Abstract: Studies of animal movement are rapidly increasing as tracking technologies make it possible to collect more data of a larger variety of species. Comparisons of animal movement across sites, times, or species are key to asking questions about animal adaptation, responses to climate and land-use change. Thus, great gains can be made by sharing and exchanging animal tracking data. Here we present an animal movement data model that we use within the Movebank web application to describe tracked animals. The model facilitates data comparisons across a broad range of taxa, study designs, and technologies, and is based on the scientific questions that could be addressed with the data.

184 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: The author guides the reader in about 350 pages from descriptive and basic statistical methods over classification and clustering to (generalised) linear and mixed models to enable researchers and students alike to reproduce the analyses and learn by doing.
Abstract: The complete title of this book runs ‘Analyzing Linguistic Data: A Practical Introduction to Statistics using R’ and as such it very well reflects the purpose and spirit of the book. The author guides the reader in about 350 pages from descriptive and basic statistical methods over classification and clustering to (generalised) linear and mixed models. Each of the methods is introduced in the context of concrete linguistic problems and demonstrated on exciting datasets from current research in the language sciences. In line with its practical orientation, the book focuses primarily on using the methods and interpreting the results. This implies that the mathematical treatment of the techniques is held at a minimum if not absent from the book. In return, the reader is provided with very detailed explanations on how to conduct the analyses using R [1]. The first chapter sets the tone being a 20-page introduction to R. For this and all subsequent chapters, the R code is intertwined with the chapter text and the datasets and functions used are conveniently packaged in the languageR package that is available on the Comprehensive R Archive Network (CRAN). With this approach, the author has done an excellent job in enabling researchers and students alike to reproduce the analyses and learn by doing. Another quality as a textbook is the fact that every chapter ends with Workbook sections where the user is invited to exercise his or her analysis skills on supplemental datasets. Full solutions including code, results and comments are given in Appendix A (30 pages). Instructors are therefore very well served by this text, although they might want to balance the book with some more mathematical treatment depending on the target audience. After the introductory chapter on R, the book opens on graphical data exploration. Chapter 3 treats probability distributions and common sampling distributions. Under basic statistical methods (Chapter 4), distribution tests and tests on means and variances are covered. Chapter 5 deals with clustering and classification. Strangely enough, the clustering section has material on PCA, factor analysis, correspondence analysis and includes only one subsection on clustering, devoted notably to hierarchical partitioning methods. The classification part deals with decision trees, discriminant analysis and support vector machines. The regression chapter (Chapter 6) treats linear models, generalised linear models, piecewise linear models and a substantial section on models for lexical richness. The final chapter on mixed models is particularly interesting as it is one of the few text book accounts that introduce the reader to using the (innovative) lme4 package of Douglas Bates which implements linear mixed-effects models. Moreover, the case studies included in this

1,679 citations

Journal ArticleDOI
12 Jun 2015-Science
TL;DR: It is suggested that a golden age of animal tracking science has begun and that the upcoming years will be a time of unprecedented exciting discoveries.
Abstract: BACKGROUND The movement of animals makes them fascinating but difficult study subjects. Animal movements underpin many biological phenomena, and understanding them is critical for applications in conservation, health, and food. Traditional approaches to animal tracking used field biologists wielding antennas to record a few dozen locations per animal, revealing only the most general patterns of animal space use. The advent of satellite tracking automated this process, but initially was limited to larger animals and increased the resolution of trajectories to only a few hundred locations per animal. The last few years have shown exponential improvement in tracking technology, leading to smaller tracking devices that can return millions of movement steps for ever-smaller animals. Finally, we have a tool that returns high-resolution data that reveal the detailed facets of animal movement and its many implications for biodiversity, animal ecology, behavior, and ecosystem function. ADVANCES Improved technology has brought animal tracking into the realm of big data, not only through high-resolution movement trajectories, but also through the addition of other on-animal sensors and the integration of remote sensing data about the environment through which these animals are moving. These new data are opening up a breadth of new scientific questions about ecology, evolution, and physiology and enable the use of animals as sensors of the environment. High–temporal resolution movement data also can document brief but important contacts between animals, creating new opportunities to study social networks, as well as interspecific interactions such as competition and predation. With solar panels keeping batteries charged, “lifetime” tracks can now be collected for some species, while broader approaches are aiming for species-wide sampling across multiple populations. Miniaturized tags also help reduce the impact of the devices on the study subjects, improving animal welfare and scientific results. As in other disciplines, the explosion of data volume and variety has created new challenges and opportunities for information management, integration, and analysis. In an exciting interdisciplinary push, biologists, statisticians, and computer scientists have begun to develop new tools that are already leading to new insights and scientific breakthroughs. OUTLOOK We suggest that a golden age of animal tracking science has begun and that the upcoming years will be a time of unprecedented exciting discoveries. Technology continues to improve our ability to track animals, with the promise of smaller tags collecting more data, less invasively, on a greater variety of animals. The big-data tracking studies that are just now being pioneered will become commonplace. If analytical developments can keep pace, the field will be able to develop real-time predictive models that integrate habitat preferences, movement abilities, sensory capacities, and animal memories into movement forecasts. The unique perspective offered by big-data animal tracking enables a new view of animals as naturally evolved sensors of environment, which we think has the potential to help us monitor the planet in completely new ways. A massive multi-individual monitoring program would allow a quorum sensing of our planet, using a variety of species to tap into the diversity of senses that have evolved across animal groups, providing new insight on our world through the sixth sense of the global animal collective. We expect that the field will soon reach a transformational point where these studies do more than inform us about particular species of animals, but allow the animals to teach us about the world.

1,096 citations

Journal ArticleDOI
TL;DR: Evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions.
Abstract: Summary Reliable assessment of animal populations is a long-standing challenge in wildlife ecology. Technological advances have led to widespread adoption of camera traps (CTs) to survey wildlife distribution, abundance and behaviour. As for any wildlife survey method, camera trapping must contend with sources of sampling error such as imperfect detection. Early applications focused on density estimation of naturally marked species, but there is growing interest in broad-scale CT surveys of unmarked populations and communities. Nevertheless, inferences based on detection indices are controversial, and the suitability of alternatives such as occupancy estimation is debatable. We reviewed 266 CT studies published between 2008 and 2013. We recorded study objectives and methodologies, evaluating the consistency of CT protocols and sampling designs, the extent to which CT surveys considered sampling error, and the linkages between analytical assumptions and species ecology. Nearly two-thirds of studies surveyed more than one species, and a majority used response variables that ignored imperfect detection (e.g. presence–absence, relative abundance). Many studies used opportunistic sampling and did not explicitly report details of sampling design and camera deployment that could affect conclusions. Most studies estimating density used capture–recapture methods on marked species, with spatially explicit methods becoming more prominent. Few studies estimated density for unmarked species, focusing instead on occupancy modelling or measures of relative abundance. While occupancy studies estimated detectability, most did not explicitly define key components of the modelling framework (e.g. a site) or discuss potential violations of model assumptions (e.g. site closure). Studies using relative abundance relied on assumptions of equal detectability, and most did not explicitly define expected relationships between measured responses and underlying ecological processes (e.g. animal abundance and movement). Synthesis and applications. The rapid adoption of camera traps represents an exciting transition in wildlife survey methodology. We remain optimistic about the technology's promise, but call for more explicit consideration of underlying processes of animal abundance, movement and detection by cameras, including more thorough reporting of methodological details and assumptions. Such transparency will facilitate efforts to evaluate and improve the reliability of camera trap surveys, ultimately leading to stronger inferences and helping to meet modern needs for effective ecological inquiry and biodiversity monitoring.

786 citations