scispace - formally typeset
Search or ask a question
Author

Bart Roman

Other affiliations: University of Minnesota
Bio: Bart Roman is an academic researcher from Ghent University. The author has contributed to research in topics: Ionic liquid & Isoindole. The author has an hindex of 14, co-authored 41 publications receiving 562 citations. Previous affiliations of Bart Roman include University of Minnesota.

Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate there are few possibilities for potency enhancement via ring A modification of the blebbistatin scaffold.

14 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the numerous in vivo animal studies on the antineoplastic potential of both natural and synthetic members of this flavonoid subclass (covering: up to mid-2011).
Abstract: One part of chemical space that is endowed with interesting biological properties is the area of the chalcones. With this review, we provide a comprehensive overview of the numerous in vivo animal studies on the antineoplastic potential of both natural and synthetic members of this flavonoid subclass (covering: up to mid-2011). The thus far identified modes of action of these compounds are also discussed. We hope that this overview may stimulate deeper investigations into the biochemical mechanisms by which chalcones exert their antineoplastic action. As a result, in the foreseeable future, chalcones may prove suitable lead molecules or early drug candidates for the prevention or treatment of various neoplastic diseases.

14 citations

Journal ArticleDOI
TL;DR: This work wanted to investigate possible routes via ring opening of alpha-amino phosphonates with an oxanorbornene skeleton, as these can be synthesized with high stereoselectivity using different Lewis acids, leading to a range of products.
Abstract: Phosphonylated azaheterocycles are an important class of compounds with high biological potential as conformationally restricted bioisosteres of amino acids. Therefore, it is of interest to synthesize conformationally constrained amino phosphonates. We wanted to investigate possible routes via ring opening of α-amino phosphonates with an oxanorbornene skeleton, as these can be synthesized with high stereoselectivity. This was achieved using different Lewis acids, leading to a range of products. The reaction with TiCl4 and FeCl3 was modelled at a DFT level of theory to get insight in the pathways towards the corresponding products. To ease the work up, the Fe(III) catalyst was coated on montmorillonite clay, but this accelerated aromatization after ring opening. Quenching the FeCl3 catalyzed reaction mixture on celite caused complete aromatization.

14 citations

Journal ArticleDOI
TL;DR: New D-ring modified (S)-blebbistatin derivatives were prepared to extend the existing small library of analogs and the most potent ones underwent a screening of their physicochemical properties.

13 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of oxazolo[4,5d]pyrimidines is reviewed, focusing on the construction of the scaffold rather than on its further modification.

13 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.
Abstract: In the past few years, continuous-flow reactors with channel dimensions in the micro- or millimeter region have found widespread application in organic synthesis. The characteristic properties of these reactors are their exceptionally fast heat and mass transfer. In microstructured devices of this type, virtually instantaneous mixing can be achieved for all but the fastest reactions. Similarly, the accumulation of heat, formation of hot spots, and dangers of thermal runaways can be prevented. As a result of the small reactor volumes, the overall safety of the process is significantly improved, even when harsh reaction conditions are used. Thus, microreactor technology offers a unique way to perform ultrafast, exothermic reactions, and allows the execution of reactions which proceed via highly unstable or even explosive intermediates. This Review discusses recent literature examples of continuous-flow organic synthesis where hazardous reactions or extreme process windows have been employed, with a focus on applications of relevance to the preparation of pharmaceuticals.

1,059 citations

Journal ArticleDOI
TL;DR: The kinetics and thermodynamics of thermal degradation are revealed piece by piece, assisted with computational methods, and the better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.
Abstract: The increasing amount of papers published on ionic liquids generates an extensive quantity of data. The thermal stability data of divergent ionic liquids are collected in this paper with attention to the experimental set-up. The influence and importance of the latter parameters are broadly addressed. Both ramped temperature and isothermal thermogravimetric analysis are discussed, along with state-of-the-art methods, such as TGA-MS and pyrolysis-GC. The strengths and weaknesses of the different methodologies known to date demonstrate that analysis methods should be in line with the application. The combination of data from advanced analysis methods allows us to obtain in-depth information on the degradation processes. Aided with computational methods, the kinetics and thermodynamics of thermal degradation are revealed piece by piece. The better understanding of the behaviour of ionic liquids at high temperature allows selective and application driven design, as well as mathematical prediction for engineering purposes.

679 citations

Journal ArticleDOI
TL;DR: This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.
Abstract: Over the last two decades, flow technologies have become increasingly popular in the field of organic chemistry, offering solutions for engineering and/or chemical problems. Flow reactors enhance the mass and heat transfer, resulting in rapid reaction mixing, and enable a precise control over the reaction parameters, increasing the overall process selectivity, efficiency and safety. These features allow chemists to tackle unexploited challenges in their work, with the ultimate objective making chemistry more accessible for laboratory and industrial applications, avoiding the need to store and handle toxic, reactive and explosive reagents. This review covers some of the latest and most relevant developments in the field of continuous flow chemistry with the focus on hazardous reactions.

490 citations

Journal ArticleDOI
TL;DR: This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field.
Abstract: Crystalline porous materials are important in the development of catalytic systems with high scientific and industrial impact. Zeolites, ordered mesoporous silica, and metal-organic frameworks (MOFs) are three types of porous materials that can be used as heterogeneous catalysts. This review focuses on a comparison of the catalytic activities of zeolites, mesoporous silica, and MOFs. In the first part of the review, the distinctive properties of these porous materials relevant to catalysis are discussed, and the corresponding catalytic reactions are highlighted. In the second part, the catalytic behaviors of zeolites, mesoporous silica, and MOFs in four types of general organic reactions (acid, base, oxidation, and hydrogenation) are compared. The advantages and disadvantages of each porous material for catalytic reactions are summarized. Conclusions and prospects for future development of these porous materials in this field are provided in the last section. This review aims to highlight recent research advancements in zeolites, ordered mesoporous silica, and MOFs for heterogeneous catalysis, and inspire further studies in this rapidly developing field.

483 citations