scispace - formally typeset
Search or ask a question
Author

Bartolo Luque

Bio: Bartolo Luque is an academic researcher from Technical University of Madrid. The author has contributed to research in topics: Degree distribution & Visibility graph. The author has an hindex of 13, co-authored 30 publications receiving 2599 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A simple and fast computational method, the visibility algorithm, that converts a time series into a graph, which inherits several properties of the series in its structure, enhancing the fact that power law degree distributions are related to fractality.
Abstract: In this work we present a simple and fast computational method, the visibility algorithm, that converts a time series into a graph. The constructed graph inherits several properties of the series in its structure. Thereby, periodic series convert into regular graphs, and random series do so into random graphs. Moreover, fractal series convert into scale-free networks, enhancing the fact that power law degree distributions are related to fractality, something highly discussed recently. Some remarkable examples and analytical tools are outlined to test the method's reliability. Many different measures, recently developed in the complex network theory, could by means of this new approach characterize time series from a new point of view.

1,320 citations

Journal ArticleDOI
23 Apr 2009-Nature
TL;DR: It is shown that nestedness reduces effective interspecific competition and enhances the number of coexisting species, and that a nested network will naturally emerge if new species are more likely to enter the community where they have minimal competitive load.
Abstract: The main theories of biodiversity either neglect species interactions or assume that species interact randomly with each other. However, recent empirical work has revealed that ecological networks are highly structured, and the lack of a theory that takes into account the structure of interactions precludes further assessment of the implications of such network patterns for biodiversity. Here we use a combination of analytical and empirical approaches to quantify the influence of network architecture on the number of coexisting species. As a case study we consider mutualistic networks between plants and their animal pollinators or seed dispersers. These networks have been found to be highly nested, with the more specialist species interacting only with proper subsets of the species that interact with the more generalist. We show that nestedness reduces effective interspecific competition and enhances the number of coexisting species. Furthermore, we show that a nested network will naturally emerge if new species are more likely to enter the community where they have minimal competitive load. Nested networks seem to occur in many biological and social contexts, suggesting that our results are relevant in a wide range of fields.

959 citations

Journal ArticleDOI
01 May 2009-EPL
TL;DR: In this paper, it was shown that the exponent of the power law degree distribution depends linearly on the Hurst parameter, H, and that the degree distribution is a function of H. The authors also proposed a new methodology to quantify long-range dependence in fractional Gaussian noises and generic f−β noises.
Abstract: Fractional Brownian motion (fBm) has been used as a theoretical framework to study real-time series appearing in diverse scientific fields. Because of its intrinsic nonstationarity and long-range dependence, its characterization via the Hurst parameter, H, requires sophisticated techniques that often yield ambiguous results. In this work we show that fBm series map into a scale-free visibility graph whose degree distribution is a function of H. Concretely, it is shown that the exponent of the power law degree distribution depends linearly on H. This also applies to fractional Gaussian noises (fGn) and generic f−β noises. Taking advantage of these facts, we propose a brand new methodology to quantify long-range dependence in these series. Its reliability is confirmed with extensive numerical simulations and analytical developments. Finally, we illustrate this method quantifying the persistent behavior of human gait dynamics.

347 citations

Journal ArticleDOI
07 Sep 2011-PLOS ONE
TL;DR: This work provides a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that it calls Feigenbaum graphs, independent of map nonlinearity or other particulars, and shows that the network entropy mimics the Lyapunov exponent of the map independently of its sign.
Abstract: The recently formulated theory of horizontal visibility graphs transforms time series into graphs and allows the possibility of studying dynamical systems through the characterization of their associated networks. This method leads to a natural graph-theoretical description of nonlinear systems with qualities in the spirit of symbolic dynamics. We support our claim via the case study of the period-doubling and band-splitting attractor cascades that characterize unimodal maps. We provide a universal analytical description of this classic scenario in terms of the horizontal visibility graphs associated with the dynamics within the attractors, that we call Feigenbaum graphs, independent of map nonlinearity or other particulars. We derive exact results for their degree distribution and related quantities, recast them in the context of the renormalization group and find that its fixed points coincide with those of network entropy optimization. Furthermore, we show that the network entropy mimics the Lyapunov exponent of the map independently of its sign, hinting at a Pesin-like relation equally valid out of chaos.

100 citations

Journal ArticleDOI
TL;DR: The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility graph theory in this article, where trajectories generated by unimodal maps close to an inverse tangent bifurcation and associated HV graphs are constructed.
Abstract: The type-I intermittency route to (or out of) chaos is investigated within the horizontal visibility (HV) graph theory. For that purpose, we address the trajectories generated by unimodal maps close to an inverse tangent bifurcation and construct their associated HV graphs. We show how the alternation of laminar episodes and chaotic bursts imprints a fingerprint in the resulting graph structure. Accordingly, we derive a phenomenological theory that predicts quantitative values for several network parameters. In particular, we predict that the characteristic power-law scaling of the mean length of laminar trend sizes is fully inherited by the variance of the graph degree distribution, in good agreement with the numerics. We also report numerical evidence on how the characteristic power-law scaling of the Lyapunov exponent as a function of the distance to the tangent bifurcation is inherited in the graph by an analogous scaling of block entropy functionals defined on the graph. Furthermore, we are able to recast the full set of HV graphs generated by intermittent dynamics into a renormalization-group framework, where the fixed points of its graph-theoretical renormalization-group flow account for the different types of dynamics. We also establish that the nontrivial fixed point of this flow coincides with the tangency condition and that the corresponding invariant graph exhibits extremal entropic properties.

42 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: In this article, a wide list of topics ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading are reviewed and connections between these problems and other, more traditional, topics of statistical physics are highlighted.
Abstract: Statistical physics has proven to be a fruitful framework to describe phenomena outside the realm of traditional physics. Recent years have witnessed an attempt by physicists to study collective phenomena emerging from the interactions of individuals as elementary units in social structures. A wide list of topics are reviewed ranging from opinion and cultural and language dynamics to crowd behavior, hierarchy formation, human dynamics, and social spreading. The connections between these problems and other, more traditional, topics of statistical physics are highlighted. Comparison of model results with empirical data from social systems are also emphasized.

3,840 citations

Journal ArticleDOI
TL;DR: A novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods is described, which provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes.
Abstract: Background: Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Results: Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with highthroughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open-accessible now (http://ieg2.ou.edu/MENA). Conclusions: The RMT-based molecular ecological network analysis provides powerful tools to elucidate network interactions in microbial communities and their responses to environmental changes, which are fundamentally important for research in microbial ecology and environmental microbiology.

1,568 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: It is concluded that strong variations in the stability of architectural patterns constrain ecological networks toward different architectures, depending on the type of interaction.
Abstract: Research on the relationship between the architecture of ecological networks and community stability has mainly focused on one type of interaction at a time, making difficult any comparison between different network types. We used a theoretical approach to show that the network architecture favoring stability fundamentally differs between trophic and mutualistic networks. A highly connected and nested architecture promotes community stability in mutualistic networks, whereas the stability of trophic networks is enhanced in compartmented and weakly connected architectures. These theoretical predictions are supported by a meta-analysis on the architecture of a large series of real pollination (mutualistic) and herbivory (trophic) networks. We conclude that strong variations in the stability of architectural patterns constrain ecological networks toward different architectures, depending on the type of interaction.

1,348 citations