scispace - formally typeset
Search or ask a question
Author

Bas A. Korevaar

Bio: Bas A. Korevaar is an academic researcher from General Electric. The author has contributed to research in topics: Cadmium telluride photovoltaics & Thin film. The author has an hindex of 4, co-authored 9 publications receiving 369 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness.
Abstract: The broadband optical absorption properties of silicon nanowire (SiNW) films fabricated on glass substrates by wet etching and chemical vapor deposition (CVD) have been measured and found to be higher than solid thin films of equivalent thickness. The observed behavior is adequately explained by light scattering and light trapping though some of the observed absorption is due to a high density of surface states in the nanowires films, as evidenced by the partial reduction in high residual sub-bandgap absorption after hydrogen passivation. Finite difference time domain simulations show strong resonance within and between the nanowires in a vertically oriented array and describe the experimental absorption data well. These structures may be of interest in optical films and optoelectronic device applications.

320 citations

Journal ArticleDOI
TL;DR: In this paper, the carrier density and carrier density distribution within CdTe solar cells were studied with scanning capacitance microscopy (SCM) with varying copper treatment conditions, and it was found that the CdCl2 film is practically undoped after deposition, while after the copper step, the density distribution is non-uniform with a mixture of p-type and intrinsic grains.
Abstract: The carrier density and carrier density distribution within CdTe solar cells were studied with scanning capacitance microscopy (SCM). The CdTe solar cells were studied after every process step and as a function of varying copper treatment conditions. It was found that the CdTe film is practically undoped after deposition and after CdCl2 treatment, while after the copper step the carrier density distribution is non-uniform with a mixture of p-type and intrinsic grains in the CdTe film. These SCM observations were also confirmed with device performance data as well as capacitance–voltage measurements and Van der Pauw Hall measurements. Copyright © 2014 John Wiley & Sons, Ltd.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on an extensive side-by-side characterization effort comparing the device properties of a highly optimized cell made on commercially available transparent conductive oxide/glass with a certified efficiency of 15.2% to a non-optimized device with a respectable efficiency of 13.0%.

4 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the measured high carrier density is not because of doping of the CdTe base material but because of an integrated network of Te present as its own phase within the cdTe matrix.
Abstract: Co-evaporation of CdTe and Te has been reported to result in CdTe films with high hole concentrations. Higher carrier density should result in more efficient solar cells if the carrier lifetime is not effected. This achievement could have a large effect on CdTe technology, in which carrier density has been limited to the 1014–1015 cm−3 range. Reproducing the work from the open literature and analyzing the films in more detail revealed that material with a high hole concentration can be obtained by co-evaporating CdTe and Te. However, analysis of these films indicated that the measured high carrier density is not because of doping of the CdTe base material but because of an integrated network of Te present as its own phase within the CdTe matrix.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.
Abstract: The use of silicon nanostructures in solar cells offers a number of benefits, such as the fact they can be used on flexible substrates. A silicon wire-array structure, containing reflecting nanoparticles for enhanced absorption, is now shown to achieve 96% peak absorption efficiency, capturing 85% of light with only 1% of the silicon used in comparable commercial cells. Si wire arrays are a promising architecture for solar-energy-harvesting applications, and may offer a mechanically flexible alternative to Si wafers for photovoltaics1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. To achieve competitive conversion efficiencies, the wires must absorb sunlight over a broad range of wavelengths and incidence angles, despite occupying only a modest fraction of the array’s volume. Here, we show that arrays having less than 5% areal fraction of wires can achieve up to 96% peak absorption, and that they can absorb up to 85% of day-integrated, above-bandgap direct sunlight. In fact, these arrays show enhanced near-infrared absorption, which allows their overall sunlight absorption to exceed the ray-optics light-trapping absorption limit18 for an equivalent volume of randomly textured planar Si, over a broad range of incidence angles. We furthermore demonstrate that the light absorbed by Si wire arrays can be collected with a peak external quantum efficiency of 0.89, and that they show broadband, near-unity internal quantum efficiency for carrier collection through a radial semiconductor/liquid junction at the surface of each wire. The observed absorption enhancement and collection efficiency enable a cell geometry that not only uses 1/100th the material of traditional wafer-based devices, but also may offer increased photovoltaic efficiency owing to an effective optical concentration of up to 20 times.

1,346 citations

Journal ArticleDOI
TL;DR: In this paper, the optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells, and a promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, with a broad external quantum efficiency of ∼12% at 690nm.
Abstract: Silicon nanowire-based solar cells on metal foil are described. The key benefits of such devices are discussed, followed by optical reflectance, current-voltage, and external quantum efficiency data for a cell design employing a thin amorphous silicon layer deposited on the nanowire array to form the p-n junction. A promising current density of ∼1.6mA∕cm2 for 1.8cm2 cells was obtained, and a broad external quantum efficiency was measured with a maximum value of ∼12% at 690nm. The optical reflectance of the silicon nanowire solar cells is reduced by one to two orders of magnitude compared to planar cells.

997 citations

Journal ArticleDOI
TL;DR: In this article, a single core-shell p-i-n junction GaAs nanowire solar cell grown on a silicon substrate was shown to achieve a short-circuit current of 180 mA cm-2 at 1 sun illumination, more than one order of magnitude higher than that predicted from the Lambert-Beer law.
Abstract: Light management is of great importance in photovoltaic cells, as it determines the fraction of incident light entering the device. An optimal p–n junction combined with optimal light absorption can lead to a solar cell efficiency above the Shockley–Queisser limit. Here, we show how this is possible by studying photocurrent generation for a single core–shell p–i–n junction GaAs nanowire solar cell grown on a silicon substrate. At 1 sun illumination, a short-circuit current of 180 mA cm –2 is obtained, which is more than one order of magnitude higher than that predicted from the Lambert–Beer law. The enhanced light absorption is shown to be due to a light-concentrating property of the standing nanowire, as shown by photocurrent maps of the device. The results imply new limits for the maximum efficiency obtainable with III–V based nanowire solar cells under 1 sun illumination.

756 citations

Journal ArticleDOI
TL;DR: The methods described herein comprise a valuable platform for measuring the properties of semiconductor nanowires, and are expected to be instrumental when designing an efficient macroscopic solar cell based on arrays of such nanostructures.
Abstract: Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-liquid-solid-grown Si nanowires. The nanowires had diameters in the range of 200 nm to 1.5 microm. Dark and light current-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response measurements were also performed. Scanning photocurrent microscopy indicated that the Si nanowire devices had minority carrier diffusion lengths of approximately 2 microm. Assuming bulk-dominated recombination, this value corresponds to a minimum carrier lifetime of approximately 15 ns, or assuming surface-dominated recombination, to a maximum surface recombination velocity of approximately 1350 cm s(-1). The methods described herein comprise a valuable platform for measuring the properties of semiconductor nanowires, and are expected to be instrumental when designing an efficient macroscopic solar cell based on arrays of such nanostructures.

601 citations

Journal ArticleDOI
TL;DR: The recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells are reviewed.
Abstract: Semiconductor nanowires are attracting intense interest as a promising material for solar energy conversion for the new-generation photovoltaic (PV) technology. In particular, silicon nanowires (SiNWs) are under active investigation for PV applications because they offer novel approaches for solar-to-electric energy conversion leading to high-efficiency devices via simple manufacturing. This article reviews the recent developments in the utilization of SiNWs for PV applications, the relationship between SiNW-based PV device structure and performance, and the challenges to obtaining high-performance cost-effective solar cells.

580 citations