scispace - formally typeset
Search or ask a question
Author

Baskar Ganapathysubramanian

Other affiliations: Cornell University
Bio: Baskar Ganapathysubramanian is an academic researcher from Iowa State University. The author has contributed to research in topics: Finite element method & Computer science. The author has an hindex of 34, co-authored 221 publications receiving 4808 citations. Previous affiliations of Baskar Ganapathysubramanian include Cornell University.


Papers
More filters
Journal ArticleDOI
TL;DR: This work provides a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits.

633 citations

Journal ArticleDOI
TL;DR: The sparse grid collocation method based on the Smolyak algorithm offers a viable alternate method for solving high-dimensional stochastic partial differential equations and an extension of the collocation approach to include adaptive refinement in important stochastically dimensions is utilized to further reduce the numerical effort necessary for simulation.

421 citations

Journal ArticleDOI
TL;DR: A comparative assessment of DL tools against other existing techniques, with respect to decision accuracy, data size requirement, and applicability in various scenarios is provided.

350 citations

Journal ArticleDOI
TL;DR: A machine learning framework’s ability to identify and classify a diverse set of foliar stresses in soybean with remarkable accuracy is demonstrated, and the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning.
Abstract: Current approaches for accurate identification, classification, and quantification of biotic and abiotic stresses in crop research and production are predominantly visual and require specialized training. However, such techniques are hindered by subjectivity resulting from inter- and intrarater cognitive variability. This translates to erroneous decisions and a significant waste of resources. Here, we demonstrate a machine learning framework's ability to identify and classify a diverse set of foliar stresses in soybean [Glycine max (L.) Merr.] with remarkable accuracy. We also present an explanation mechanism, using the top-K high-resolution feature maps that isolate the visual symptoms used to make predictions. This unsupervised identification of visual symptoms provides a quantitative measure of stress severity, allowing for identification (type of foliar stress), classification (low, medium, or high stress), and quantification (stress severity) in a single framework without detailed symptom annotation by experts. We reliably identified and classified several biotic (bacterial and fungal diseases) and abiotic (chemical injury and nutrient deficiency) stresses by learning from over 25,000 images. The learned model is robust to input image perturbations, demonstrating viability for high-throughput deployment. We also noticed that the learned model appears to be agnostic to species, seemingly demonstrating an ability of transfer learning. The availability of an explainable model that can consistently, rapidly, and accurately identify and quantify foliar stresses would have significant implications in scientific research, plant breeding, and crop production. The trained model could be deployed in mobile platforms (e.g., unmanned air vehicles and automated ground scouts) for rapid, large-scale scouting or as a mobile application for real-time detection of stress by farmers and researchers.

338 citations

Journal ArticleDOI
TL;DR: A novel 3D deep convolutional neural network (DCNN) is deployed that directly assimilates the hyperspectral data and provides physiological insight into model predictions, thus generating confidence in model predictions.
Abstract: Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaningful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease that affects the yield of soybean crops worldwide. Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D DCNN has a classification accuracy of 95.73% and an infected class F1 score of 0.87. Using the concept of a saliency map, we visualize the most sensitive pixel locations, and show that the spatial regions with visible disease symptoms are overwhelmingly chosen by the model for classification. We also find that the most sensitive wavelengths used by the model for classification are in the near infrared region (NIR), which is also the commonly used spectral range for determining the vegetative health of a plant. The use of an explainable deep learning model not only provides high accuracy, but also provides physiological insight into model predictions, thus generating confidence in model predictions. These explained predictions lend themselves for eventual use in precision agriculture and research application using automated phenotyping platforms.

173 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a deep convolutional neural network was used to identify 14 crop species and 26 diseases (or absence thereof) using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions.
Abstract: Crop diseases are a major threat to food security, but their rapid identification remains difficult in many parts of the world due to the lack of the necessary infrastructure. The combination of increasing global smartphone penetration and recent advances in computer vision made possible by deep learning has paved the way for smartphone-assisted disease diagnosis. Using a public dataset of 54,306 images of diseased and healthy plant leaves collected under controlled conditions, we train a deep convolutional neural network to identify 14 crop species and 26 diseases (or absence thereof). The trained model achieves an accuracy of 99.35% on a held-out test set, demonstrating the feasibility of this approach. Overall, the approach of training deep learning models on increasingly large and publicly available image datasets presents a clear path toward smartphone-assisted crop disease diagnosis on a massive global scale.

2,150 citations

Journal ArticleDOI
TL;DR: A survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges indicates that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

2,100 citations