scispace - formally typeset
Search or ask a question
Author

Bassem El Dasher

Bio: Bassem El Dasher is an academic researcher from Carnegie Mellon University. The author has contributed to research in topics: Grain boundary & Misorientation. The author has an hindex of 4, co-authored 4 publications receiving 405 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review techniques that can be used to study the mesoscopic crystallographic structure of grain boundary networks and summarize current findings, showing that grain surfaces within dense polycrystals favor the same low energy planes that are found on equilibrium crystal shapes and growth forms of crystals in contact with another phase.
Abstract: Recent advances both in experimental instrumentation and computing power have made it possible to interrogate the distribution of internal interfaces in polycrystals and the three dimensional structure of the grain boundary network with an unprecedented level of detail. The purpose of this paper is to review techniques that can be used to study the mesoscopic crystallographic structure of grain boundary networks and to summarize current findings. Recent studies have shown that grain surfaces within dense polycrystals favor the same low energy planes that are found on equilibrium crystal shapes and growth forms of crystals in contact with another phase. In the materials for which comprehensive data exists, the distribution of grain boundaries is inversely correlated to the sum of the energies of the surfaces of the grains on either side of the boundary.

236 citations

Journal ArticleDOI
TL;DR: In this article, the authors measured the grain boundary population as a function of misorientation and boundary plane orientation and found that the distribution is inversely correlated to the sum of the energies of the surfaces comprising each boundary.
Abstract: Measurements of the grain boundary population as a function of misorientation and boundary plane orientation show that the distribution is inversely correlated to the sum of the energies of the surfaces comprising each boundary. The observed correlation suggests that the difference between the energy of a high-angle grain boundary and the two component surfaces is relatively constant as a function of misorientation. Two exceptions to this correlation were identified: low-misorientation-angle boundaries and the coherent twin boundary, where the (111) planes in the adjoining crystals are parallel to each other, but rotated by 60° around the [111] axis. In these cases, the high degree of coincidence across this interface probably lowers the boundary energy with respect to that of the component surfaces. For all other boundaries, the anisotropy of the population is accurately predicted by the surface energy anisotropy, and in general, boundaries display a preference for {100} orientations, the planes of minimum surface energy.

97 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the boundaries of individual grains in dense polycrystals prefer certain crystallographic habit planes, almost as if they were independent of the neighboring crystals.
Abstract: We show here that the boundaries of individual grains in dense polycrystals prefer certain crystallographic habit planes, almost as if they were independent of the neighboring crystals. In MgO, SrTiO3, MgAl2O4, TiO2, and aluminum, the specific habit planes within the polycrystal correspond to the same planes that dominate the external growth forms and equilibrium shapes of isolated crystals of the same phase. The observations decrease the apparent complexity of interfacial networks and suggest that the mechanisms of solid-state grain growth may be analogous to conventional crystal growth. The results also indicate that a model for grain-boundary energy and structure based on grain surface relationships is more appropriate than the widely accepted models based on lattice orientation relationships.

77 citations

Journal ArticleDOI
TL;DR: In this paper, the grain boundary character distribution in MgAl2O4 (spinel) is analyzed as a function of lattice misorientation and boundary plane orientation.
Abstract: Measurements of the grain boundary character distribution in MgAl2O4 (spinel) as a function of lattice misorientation and boundary plane orientation show that at all misorientations, grain boundaries are most frequently terminated on {111} planes. Boundaries with {111} orientations are observed 2.5 times more frequently than boundaries with {100} orientations. Furthermore, the most common boundary type is the twist boundary formed by a 60° rotation about the [111] axis. {111} planes also dominate the external form of spinel crystals found in natural settings, and this suggests that they are low energy and/or slow growing planes. The mechanisms that might lead to a high population of these planes during solid state crystal growth are discussed.

15 citations


Cited by
More filters
Journal ArticleDOI
10 Mar 1970

8,159 citations

Journal ArticleDOI
TL;DR: The absolute grain boundary mobility of 388 nickel grain boundaries was calculated using a synthetic driving force molecular dynamics method; complete results appear in the Supplementary materials as discussed by the authors. But the authors did not consider the effect of boundary mobility on grain boundary roughening.

646 citations

Journal ArticleDOI
TL;DR: The distinctive features of the typical interfaces and interphases in ASSBs are presented and the recent work on identifying, probing, understanding, and engineering them are summarized.
Abstract: All-solid-state batteries (ASSBs) have attracted enormous attention as one of the critical future technologies for safe and high energy batteries. With the emergence of several highly conductive solid electrolytes in recent years, the bottleneck is no longer Li-ion diffusion within the electrolyte. Instead, many ASSBs are limited by their low Coulombic efficiency, poor power performance, and short cycling life due to the high resistance at the interfaces within ASSBs. Because of the diverse chemical/physical/mechanical properties of various solid components in ASSBs as well as the nature of solid-solid contact, many types of interfaces are present in ASSBs. These include loose physical contact, grain boundaries, and chemical and electrochemical reactions to name a few. All of these contribute to increasing resistance at the interface. Here, we present the distinctive features of the typical interfaces and interphases in ASSBs and summarize the recent work on identifying, probing, understanding, and engineering them. We highlight the complicated, but important, characteristics of interphases, namely the composition, distribution, and electronic and ionic properties of the cathode-electrolyte and electrolyte-anode interfaces; understanding these properties is the key to designing a stable interface. In addition, conformal coatings to prevent side reactions and their selection criteria are reviewed. We emphasize the significant role of the mechanical behavior of the interfaces as well as the mechanical properties of all ASSB components, especially when the soft Li metal anode is used under constant stack pressure. Finally, we provide full-scale (energy, spatial, and temporal) characterization methods to explore, diagnose, and understand the dynamic and buried interfaces and interphases. Thorough and in-depth understanding on the complex interfaces and interphases is essential to make a practical high-energy ASSB.

538 citations

Journal ArticleDOI
TL;DR: An overview of the most recent developments in the area of atomistic modeling with emphasis on interfaces and their impact on microstructure and properties of materials is given in this paper, along with some challenges and future research directions in this field.

455 citations

Journal ArticleDOI
TL;DR: A review of grain boundary energy anisotropy can be found in this paper, with a brief discussion of the role of the grain boundary energies in nucleating discontinuous transitions in grain boundary structure and chemistry known as complexion transitions.
Abstract: This paper reviews findings on the anisotropy of the grain boundary energies. After introducing the basic concepts, there is a discussion of fundamental models used to understand and predict grain boundary energy anisotropy. Experimental methods for measuring the grain boundary energy anisotropy, all of which involve application of the Herring equation, are then briefly described. The next section reviews and compares the results of measurements and model calculations with the goal of identifying generally applicable characteristics. This is followed by a brief discussion of the role of grain boundary energies in nucleating discontinuous transitions in grain boundary structure and chemistry, known as complexion transitions. The review ends with some questions to be addressed by future research and a summary of what is known about grain boundary energy anisotropy.

366 citations