scispace - formally typeset
Search or ask a question
Author

Beatrice Belenghi

Bio: Beatrice Belenghi is an academic researcher from Hebrew University of Jerusalem. The author has contributed to research in topics: Proteases & Cysteine protease. The author has an hindex of 9, co-authored 10 publications receiving 2056 citations. Previous affiliations of Beatrice Belenghi include Ghent University & University of Verona.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases, and a new role for proteinase inhibitor genes as modulators of PCD in plants is proposed.
Abstract: Programmed cell death (PCD) is a process by which cells in many organisms die. The basic morphological and biochemical features of PCD are conserved between the animal and plant kingdoms. Cysteine proteases have emerged as key enzymes in the regulation of animal PCD. Here, we show that in soybean cells, PCD-activating oxidative stress induced a set of cysteine proteases. The activation of one or more of the cysteine proteases was instrumental in the PCD of soybean cells. Inhibition of the cysteine proteases by ectopic expression of cystatin, an endogenous cysteine protease inhibitor gene, inhibited induced cysteine protease activity and blocked PCD triggered either by an avirulent strain of Pseudomonas syringae pv glycinea or directly by oxidative stress. Similar expression of serine protease inhibitors was ineffective. A glutathione S -transferase–cystatin fusion protein was used to purify and characterize the induced proteases. Taken together, our results suggest that plant PCD can be regulated by activity poised between the cysteine proteases and the cysteine protease inhibitors. We also propose a new role for proteinase inhibitor genes as modulators of PCD in plants.

755 citations

Journal ArticleDOI
TL;DR: The role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells is analyzed and it is suggested that protease activation is a necessary step in the cell death pathway after mitochondrial damage.
Abstract: Mitochondria constitute a major source of reactive oxygen species and have been proposed to integrate the cellular responses to stress. In animals, it was shown that mitochondria can trigger apoptosis from diverse stimuli through the opening of MTP, which allows the release of the apoptosis-inducing factor and translocation of cytochrome c into the cytosol. Here, we analyzed the role of the mitochondria in the generation of oxidative burst and induction of programmed cell death in response to brief or continuous oxidative stress in Arabidopsis cells. Oxidative stress increased mitochondrial electron transport, resulting in amplification of H(2)O(2) production, depletion of ATP, and cell death. The increased generation of H(2)O(2) also caused the opening of the MTP and the release of cytochrome c from mitochondria. The release of cytochrome c and cell death were prevented by a serine/cysteine protease inhibitor, Pefablock. However, addition of inhibitor only partially inhibited the H(2)O(2) amplification and the MTP opening, suggesting that protease activation is a necessary step in the cell death pathway after mitochondrial damage.

525 citations

Journal ArticleDOI
TL;DR: S-nitrosylation plays a central role in the regulation of the proteolytic activity of Arabidopsis thaliana metacaspase 9 (AtMC9) and it is found that AtMC9 zymogens are S-Nitrosylated at their active site cysteines in vivo and that this posttranslational modification suppresses both At MC9 autoprocessing and proteolytics activity.

242 citations

Journal ArticleDOI
TL;DR: The suppression of the NO-mediated cell death in plants overexpressing AtCYS1 provides the evidence that NO is not cytotoxic for the plant, indicating that NO functions as cell death trigger through the stimulation of an active process, in which cysteine proteases and theirs proteinaceous inhibitors appear to play a crucial role.
Abstract: In plants, cysteine protease inhibitors are involved in the regulation of protein turnover and play an important role in resistance against insects and pathogens. AtCYS1 from Arabidopsis thaliana encodes a protein of 102 amino acids that contains the conserved motif of cysteine protease inhibitors belonging to the cystatin superfamily (GlnVal-Val-Ala-Gly). Recombinant A. thaliana cystatin-1 (AtCYS1) was expressed in Escherichia coli and purified. AtCYS1 inhibits the catalytic activity of papain (Kd ¼ 4.0 · 10 )2 lM ,a t pH 7.0 and 25� C), generally taken as a molecular model of cysteine proteases. The molecular bases for papain inhibition by AtCYS1 have been analysed taking into account the three-dimensional structure of the papain–stefin B complex. AtCYS1 is constitutively expressed in roots and in developing siliques of A. thaliana. In leaves, AtCYS1 is strongly induced by wounding, by challenge with avirulent pathogens and by nitric oxide (NO). The overexpression of AtCYS1 blocks cell death activated by either avirulent pathogens or by oxidative and nitrosative stress in both A. thaliana suspension cultured cells and in transgenic tobacco plants. The suppression of the NO-mediated cell death in plants overexpressing AtCYS1 provides the evidence that NO is not cytotoxic for the plant, indicating that NO functions as cell death trigger through the stimulation of an active process, in which cysteine proteases and theirs proteinaceous inhibitors appear to play a crucial role.

209 citations

Journal ArticleDOI
TL;DR: It is shown that AtMC9 is a strict Arg/Lys-specific protease, the first report of plant protease inhibition by a plant serpin, and a serine protease inhibitor is identified.

181 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Abstract: Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.

9,908 citations

01 Jan 1999
TL;DR: Caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases as discussed by the authors, and they play critical roles in initiation and execution of this process.
Abstract: ■ Abstract Apoptosis is a genetically programmed, morphologically distinct form of cell death that can be triggered by a variety of physiological and pathological stimuli. Studies performed over the past 10 years have demonstrated that proteases play critical roles in initiation and execution of this process. The caspases, a family of cysteine-dependent aspartate-directed proteases, are prominent among the death proteases. Caspases are synthesized as relatively inactive zymogens that become activated by scaffold-mediated transactivation or by cleavage via upstream proteases in an intracellular cascade. Regulation of caspase activation and activity occurs at several different levels: ( a) Zymogen gene transcription is regulated; ( b) antiapoptotic members of the Bcl-2 family and other cellular polypeptides block proximity-induced activation of certain procaspases; and ( c) certain cellular inhibitor of apoptosis proteins (cIAPs) can bind to and inhibit active caspases. Once activated, caspases cleave a variety of intracellular polypeptides, including major structural elements of the cytoplasm and nucleus, components of the DNA repair machinery, and a number of protein kinases. Collectively, these scissions disrupt survival pathways and disassemble important architectural components of the cell, contributing to the stereotypic morphological and biochemical changes that characterize apoptotic cell death.

2,685 citations

Journal ArticleDOI
TL;DR: The results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.
Abstract: Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2,375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling molecules salicylic acid (SA), methyl jasmonate (MJ), or ethylene. Substantial changes (up- and down-regulation) in the steady-state abundance of 705 mRNAs were observed in response to one or more of the treatments, including known and putative defense-related genes and 106 genes with no previously described function or homology. In leaf tissue inoculated with A. brassicicola, the abundance of 168 mRNAs was increased more than 2.5-fold, whereas that of 39 mRNAs was reduced. Similarly, the abundance of 192, 221, and 55 mRNAs was highly (>2.5-fold) increased after treatment with SA, MJ, and ethylene, respectively. Data analysis revealed a surprising level of coordinated defense responses, including 169 mRNAs regulated by multiple treatments/defense pathways. The largest number of genes coinduced (one of four induced genes) and corepressed was found after treatments with SA and MJ. In addition, 50% of the genes induced by ethylene treatment were also induced by MJ treatment. These results indicated the existence of a substantial network of regulatory interactions and coordination occurring during plant defense among the different defense signaling pathways, notably between the salicylate and jasmonate pathways that were previously thought to act in an antagonistic fashion.

1,472 citations

Journal ArticleDOI
TL;DR: Large-scale transcriptional changes accompany insect-induced resistance, which is organized into specific temporal and spatial patterns and points to the existence of herbivore-specific trans-activating elements orchestrating the responses.
Abstract: ▪ Abstract Plants respond to herbivore attack with a bewildering array of responses, broadly categorized as direct and indirect defenses, and tolerance. Plant-herbivore interactions are played out on spatial scales that include the cellular responses, well-studied in plant-pathogen interactions, as well as responses that function at whole-plant and community levels. The plant's wound response plays a central role but is frequently altered by insect-specific elicitors, giving plants the potential to optimize their defenses. In this review, we emphasize studies that advance the molecular understanding of elicited direct and indirect defenses and include verifications with insect bioassays. Large-scale transcriptional changes accompany insect-induced resistance, which is organized into specific temporal and spatial patterns and points to the existence of herbivore-specific trans-activating elements orchestrating the responses. Such organizational elements could help elucidate the molecular control over the d...

1,423 citations

Journal ArticleDOI
TL;DR: Breeders are asked to blend together all knowledge on the traits sustaining yield under drought and to accumulate the most effective QTLs and/or transgenes into elite genotypes without detrimental effects on yield potential, which will lead to new cultivars with high yield potential and high yield stability, that will result in superior performance in dry environments.

1,281 citations