scispace - formally typeset
Search or ask a question
Author

Beatrice H. Hahn

Bio: Beatrice H. Hahn is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Virus & Simian immunodeficiency virus. The author has an hindex of 129, co-authored 458 publications receiving 69206 citations. Previous affiliations of Beatrice H. Hahn include University of North Carolina at Chapel Hill & University of Alabama.


Papers
More filters
Journal ArticleDOI
12 Jan 1995-Nature
TL;DR: Almost complete replacement of wild-type virus in plasma by drug-resistant variants occurs after fourteen days, indicating that HIV-1 viraemia is sustained primarily by a dynamic process involving continuous rounds of de novo virus infection and replication and rapid cell turnover.
Abstract: The dynamics of HIV-1 replication in vivo are largely unknown yet they are critical to our understanding of disease pathogenesis. Experimental drugs that are potent inhibitors of viral replication can be used to show that the composite lifespan of plasma virus and virus-producing cells is remarkably short (half-life approximately 2 days). Almost complete replacement of wild-type virus in plasma by drug-resistant variants occurs after fourteen days, indicating that HIV-1 viraemia is sustained primarily by a dynamic process involving continuous rounds of de novo virus infection and replication and rapid cell turnover.

3,169 citations

Journal ArticleDOI
20 Mar 2003-Nature
TL;DR: The detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies is reported, indicating a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.
Abstract: Neutralizing antibodies (Nab) are a principal component of an effective human immune response to many pathogens, yet their role in HIV-1 infection is unclear. To gain a better understanding of this role, we examined plasma from patients with acute HIV infection. Here we report the detection of autologous Nab as early as 52 days after detection of HIV-specific antibodies. The viral inhibitory activity of Nab resulted in complete replacement of neutralization-sensitive virus by successive populations of resistant virus. Escape virus contained mutations in the env gene that were unexpectedly sparse, did not map generally to known neutralization epitopes, and involved primarily changes in N-linked glycosylation. This pattern of escape, and the exceptional density of HIV-1 envelope glycosylation generally, led us to postulate an evolving 'glycan shield' mechanism of neutralization escape whereby selected changes in glycan packing prevent Nab binding but not receptor binding. Direct support for this model was obtained by mutational substitution showing that Nab-selected alterations in glycosylation conferred escape from both autologous antibody and epitope-specific monoclonal antibodies. The evolving glycan shield thus represents a new mechanism contributing to HIV-1 persistence in the face of an evolving antibody repertoire.

2,427 citations

Journal ArticleDOI
TL;DR: HIV-1-specific CTL activity is a major component of the host immune response associated with the control of virus replication following primary HIV-1 infection and have important implications for the design of antiviral vaccines.
Abstract: Human immunodeficiency virus type 1 (HIV-1) Env-, Gag-, Pol-, Nef-, and Tat-specific cytotoxic T-lymphocyte (CTL) activities were quantitated temporally in five patients with symptomatic primary HIV-1 infection. A dominant CD8(+)-mediated, major histocompatibility complex class I-restricted CTL response to the HIV-1 envelope glycoprotein, gp160, was noted in four of the five patients studied. The level of HIV-1-specific CTL activity in the five patients paralleled the efficiency of control of primary viremia. Patients who mounted strong gp160-specific CTL responses showed rapid reduction of acute plasma viremia and antigenemia, while in contrast, primary viremia and antigenemia were poorly controlled in patients in whom virus-specific CTL activity was low or undetectable. These results suggest that HIV-1-specific CTL activity is a major component of the host immune response associated with the control of virus replication following primary HIV-1 infection and have important implications for the design of antiviral vaccines.

1,924 citations

Journal ArticleDOI
TL;DR: A mathematical model of random viral evolution and phylogenetic tree construction is developed and used to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection, suggesting a finite window of potential vulnerability of HIV- 1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.
Abstract: The precise identification of the HIV-1 envelope glycoprotein (Env) responsible for productive clinical infection could be instrumental in elucidating the molecular basis of HIV-1 transmission and in designing effective vaccines. Here, we developed a mathematical model of random viral evolution and, together with phylogenetic tree construction, used it to analyze 3,449 complete env sequences derived by single genome amplification from 102 subjects with acute HIV-1 (clade B) infection. Viral env genes evolving from individual transmitted or founder viruses generally exhibited a Poisson distribution of mutations and star-like phylogeny, which coalesced to an inferred consensus sequence at or near the estimated time of virus transmission. Overall, 78 of 102 subjects had evidence of productive clinical infection by a single virus, and 24 others had evidence of productive clinical infection by a minimum of two to five viruses. Phenotypic analysis of transmitted or early founder Envs revealed a consistent pattern of CCR5 dependence, masking of coreceptor binding regions, and equivalent or modestly enhanced resistance to the fusion inhibitor T1249 and broadly neutralizing antibodies compared with Envs from chronically infected subjects. Low multiplicity infection and limited viral evolution preceding peak viremia suggest a finite window of potential vulnerability of HIV-1 to vaccine-elicited immune responses, although phenotypic properties of transmitted Envs pose a formidable defense.

1,880 citations

Journal ArticleDOI
04 Feb 1999-Nature
TL;DR: The genome of a new SIVcpz strain is sequenced and the subspecies identity of all known SIV cpz-infected chimpanzees is determined, by mitochondrial DNA analysis, and it is found that two chimpanzee subspecies in Africa harbour SIVCPz and that their respective viruses form two highly divergent (but subspecies-specific) phylogenetic lineages.
Abstract: The human AIDS viruses human immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2) represent cross-species (zoonotic) infections. Although the primate reservoir of HIV-2 has been clearly identified as the sooty mangabey (Cercocebus atys), the origin of HIV-1 remains uncertain. Viruses related to HIV-1 have been isolated from the common chimpanzee (Pan troglodytes), but only three such SIVcpz infections have been documented, one of which involved a virus so divergent that it might represent a different primate lentiviral lineage. In a search for the HIV-1 reservoir, we have now sequenced the genome of a new SIVcpzstrain (SIVcpzUS) and have determined, by mitochondrial DNA analysis, the subspecies identity of all known SIVcpz-infected chimpanzees. We find that two chimpanzee subspecies in Africa, the central P. t. troglodytes and the eastern P. t. schweinfurthii, harbour SIVcpz and that their respective viruses form two highly divergent (but subspecies-specific) phylogenetic lineages. All HIV-1 strains known to infect man, including HIV-1 groups M, N and O, are closely related to just one of these SIVcpz lineages, that found in P. t. troglodytes. Moreover, we find that HIV-1 group N is a mosaic of SIVcpzUS- and HIV-1-related sequences, indicating an ancestral recombination event in a chimpanzee host. These results, together with the observation that the natural range of P. t. troglodytes coincides uniquely with areas of HIV-1 group M, N and O endemicity, indicate that P. t. troglodytes is the primary reservoir for HIV-1 and has been the source of at least three independent introductions of SIVcpz into the human population.

1,760 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

Journal ArticleDOI
TL;DR: Unlike other quantitative PCR methods, real-time PCR does not require post-PCR sample handling, preventing potential PCR product carry-over contamination and resulting in much faster and higher throughput assays.
Abstract: We have developed a novel "real time" quantitative PCR method. The method measures PCR product accumulation through a dual-labeled fluorogenic probe (i.e., TaqMan Probe). This method provides very accurate and reproducible quantitation of gene copies. Unlike other quantitative PCR methods, real-time PCR does not require post-PCR sample handling, preventing potential PCR product carry-over contamination and resulting in much faster and higher throughput assays. The real-time PCR method has a very large dynamic range of starting target molecule determination (at least five orders of magnitude). Real-time quantitative PCR is extremely accurate and less labor-intensive than current quantitative PCR methods.

6,367 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduce a new approach to perform relaxed phylogenetic analysis, which can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times.
Abstract: In phylogenetics, the unrooted model of phylogeny and the strict molecular clock model are two extremes of a continuum. Despite their dominance in phylogenetic inference, it is evident that both are biologically unrealistic and that the real evolutionary process lies between these two extremes. Fortunately, intermediate models employing relaxed molecular clocks have been described. These models open the gate to a new field of “relaxed phylogenetics.” Here we introduce a new approach to performing relaxed phylogenetic analysis. We describe how it can be used to estimate phylogenies and divergence times in the face of uncertainty in evolutionary rates and calibration times. Our approach also provides a means for measuring the clocklikeness of datasets and comparing this measure between different genes and phylogenies. We find no significant rate autocorrelation among branches in three large datasets, suggesting that autocorrelated models are not necessarily suitable for these data. In addition, we place these datasets on the continuum of clocklikeness between a strict molecular clock and the alternative unrooted extreme. Finally, we present analyses of 102 bacterial, 106 yeast, 61 plant, 99 metazoan, and 500 primate alignments. From these we conclude that our method is phylogenetically more accurate and precise than the traditional unrooted model while adding the ability to infer a timescale to evolution.

5,812 citations