scispace - formally typeset
Search or ask a question
Author

Beatriz Garat

Bio: Beatriz Garat is an academic researcher from University of the Republic. The author has contributed to research in topics: Trypanosoma cruzi & Gene. The author has an hindex of 20, co-authored 57 publications receiving 1295 citations. Previous affiliations of Beatriz Garat include National Autonomous University of Mexico.


Papers
More filters
Journal ArticleDOI
TL;DR: In the search for new therapeutic tools against diseases produced by kinetoplastid parasites five vanadyl complexes, [V(IV)O(L-2H)(phen)], including 1,10-phenanthroline (phen) and tridentate salicylaldehyde semicarbazone derivatives as ligands have been synthesized and characterized in the solid state and in solution by using different techniques.

112 citations

Journal ArticleDOI
TL;DR: A large subset of genes is modulated at the translation level in two different stages of Trypanosoma cruzi life cycle, indicating different degrees of control operating to prepare the parasite for an infective life form.
Abstract: Due to the absence of transcription initiation regulation of protein coding genes transcribed by RNA polymerase II, posttranscriptional regulation is responsible for the majority of gene expression changes in trypanosomatids. Therefore, cataloging the abundance of mRNAs (transcriptome) and the level of their translation (translatome) is a key step to understand control of gene expression in these organisms. Here we assess the extent of regulation of the transcriptome and the translatome in the Chagas disease causing agent, Trypanosoma cruzi, in both the non-infective (epimastigote) and infective (metacyclic trypomastigote) insect’s life stages using RNA-seq and ribosome profiling. The observed steady state transcript levels support constitutive transcription and maturation implying the existence of distinctive posttranscriptional regulatory mechanisms controlling gene expression levels at those parasite stages. Meanwhile, the downregulation of a large proportion of the translatome indicates a key role of translation control in differentiation into the infective form. The previously described proteomic data correlate better with the translatomes than with the transcriptomes and translational efficiency analysis shows a wide dynamic range, reinforcing the importance of translatability as a regulatory step. Translation efficiencies for protein families like ribosomal components are diminished while translation of the transialidase virulence factors is upregulated in the quiescent infective metacyclic trypomastigote stage. A large subset of genes is modulated at the translation level in two different stages of Trypanosoma cruzi life cycle. Translation upregulation of virulence factors and downregulation of ribosomal proteins indicates different degrees of control operating to prepare the parasite for an infective life form. Taking together our results show that translational regulation, in addition to regulation of steady state level of mRNA, is a major factor playing a role during the parasite differentiation.

112 citations

Journal ArticleDOI
TL;DR: In the search for new therapeutic tools against Chagas' disease (American Trypanosomiasis) four novel mixed-ligand vanadyl complexes, including a bidentate polypyridyl DNA intercalator and a tridentate salycylaldehyde semicarbazone derivative as ligands were synthesized, characterized by a combination of techniques and in vitro evaluated.

89 citations

Journal ArticleDOI
TL;DR: The vanadyl complex exhibited excellent in vitro anti-tumor activity against leukemia comparable to that of cisplatin, inducing cell death by apoptosis with IC(50) values in the micromolar range.

79 citations

Journal ArticleDOI
TL;DR: Results suggest that the complexes could inhibit parasite growth through a dual mechanism of action involving production of toxic free radicals by bioreduction and DNA interaction.

74 citations


Cited by
More filters
Journal ArticleDOI
26 May 2005-Nature
TL;DR: The mouse genome is systematically screened for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self.
Abstract: Despite the sequencing of the human and mouse genomes, few genetic mechanisms for protecting against autoimmune disease are currently known. Here we systematically screen the mouse genome for autoimmune regulators to isolate a mouse strain, sanroque, with severe autoimmune disease resulting from a single recessive defect in a previously unknown mechanism for repressing antibody responses to self. The sanroque mutation acts within mature T cells to cause formation of excessive numbers of follicular helper T cells and germinal centres. The mutation disrupts a repressor of ICOS, an essential co-stimulatory receptor for follicular T cells, and results in excessive production of the cytokine interleukin-21. sanroque mice fail to repress diabetes-causing T cells, and develop high titres of autoantibodies and a pattern of pathology consistent with lupus. The causative mutation is in a gene of previously unknown function, roquin (Rc3h1), which encodes a highly conserved member of the RING-type ubiquitin ligase protein family. The Roquin protein is distinguished by the presence of a CCCH zinc-finger found in RNA-binding proteins, and localization to cytosolic RNA granules implicated in regulating messenger RNA translation and stability.

816 citations

Journal ArticleDOI
TL;DR: A wide range of new lead finding and lead optimization opportunities result from novel screening methods by NMR, which are the topic of this review article.
Abstract: In recent years, tools for the development of new drugs have been dramatically improved. These include genomic and proteomic research, numerous biophysical methods, combinatorial chemistry and screening technologies. In addition, early ADMET studies are employed in order to significantly reduce the failure rate in the development of drug candidates. As a consequence, the lead finding, lead optimization and development process has gained marked enhancement in speed and efficiency. In parallel to this development, major pharma companies are increasingly outsourcing many components of drug discovery research to biotech companies. All these measures are designed to address the need for a faster time to market. New screening methodologies have contributed significantly to the efficiency of the drug discovery process. The conventional screening of single compounds or compound libraries has been dramatically accelerated by high throughput screening methods. In addition, in silico screening methods allow the evaluation of virtual compounds. A wide range of new lead finding and lead optimization opportunities result from novel screening methods by NMR, which are the topic of this review article.

803 citations

01 Jan 2008
TL;DR: The recent achievement of oxaliplatin for the treatment of colon cancer should not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs.
Abstract: Triggered by the resounding success of cisplatin, the past decades have seen tremendous efforts to produce clinically beneficial analogues. The recent achievement of oxaliplatin for the treatment of colon cancer should, however, not belie the imbalance between a plethora of investigated complexes and a very small number of clinically approved platinum drugs. Strategies opening up new avenues are increasingly being sought using complexes of metals other than platinum such as ruthenium or gallium. Based on the chemical differences between these metals, the spectrum of molecular mechanisms of action and potential indications can be broadened substantially. Other approaches focus on complexes with tumour-targeting properties, thereby maximizing the impact on cancer cells and minimizing the problem of adverse side effects, and complexes with biologically active ligands.

698 citations

01 Jan 2009
TL;DR: In this article, a review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
Abstract: MicroRNAs (miRNAs) are endogenous ∼23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.

646 citations

BookDOI
01 Jan 1973

430 citations