scispace - formally typeset
Search or ask a question
Author

Beau A. Standish

Bio: Beau A. Standish is an academic researcher from Ryerson University. The author has contributed to research in topics: Optical coherence tomography & Laser. The author has an hindex of 25, co-authored 54 publications receiving 2645 citations. Previous affiliations of Beau A. Standish include Ontario Institute for Cancer Research & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: This technique can visualize vessel-size-dependent vascular shutdown and transient vascular occlusion during Visudyne photodynamic therapy and may provide opportunities for studying therapeutic effects of antivascular treatments without on exogenous contrast agent.
Abstract: We report on imaging of microcirculation by calculating the speckle variance of optical coherence tomography (OCT) structural images acquired using a Fourier domain mode-locked swept-wavelength laser. The algorithm calculates interframe speckle variance in two-dimensional and three-dimensional OCT data sets and shows little dependence to the Doppler angle ranging from 75 degrees to 90 degrees . We demonstrate in vivo detection of blood flow in vessels as small as 25 microm in diameter in a dorsal skinfold window chamber model with direct comparison with intravital fluorescence confocal microscopy. This technique can visualize vessel-size-dependent vascular shutdown and transient vascular occlusion during Visudyne photodynamic therapy and may provide opportunities for studying therapeutic effects of antivascular treatments without on exogenous contrast agent.

677 citations

Journal ArticleDOI
TL;DR: It is demonstrated that higher accuracy estimates of speckle variance can enhance the detection of capillaries and lead to better vessel detection than Doppler OCT.
Abstract: We optimize speckle variance optical coherence tomography (svOCT) imaging of microvasculature in high and low bulk tissue motion scenarios. To achieve a significant level of image contrast, frame rates must be optimized such that tissue displacement between frames is less than the beam radius. We demonstrate that higher accuracy estimates of speckle variance can enhance the detection of capillaries. These findings are illustrated in vivo by imaging the dorsal window chamber model (low bulk motion). We also show svOCT imaging of the nonstabilized finger (high bulk motion), using optimized imaging parameters, demonstrating better vessel detection than Doppler OCT.

256 citations

Patent
28 Apr 2011
TL;DR: In this article, a system for registration of 3D image data associated with an object or patient to topological image data obtained using a surface topology imaging device is presented. But the system is limited to the registration of CT or MRI images associated with a patient.
Abstract: Systems and methods for surgical guidance and image registration are provided, in which three-dimensional image data associated with an object or patient is registered to topological image data obtained using a surface topology imaging device. The surface topology imaging device may be rigidly attached to an optical position measurement system that also tracks fiducial markers on a movable instrument. The instrument may be registered to the topological image data, such that the topological image data and the movable instrument are registered to the three-dimensional image data. The three-dimensional image data may be CT or MRI data associated with a patient. The system may also co-register images pertaining to a surgical plan with the three-dimensional image data. In another aspect, the surface topology imaging device may be configured to directly track fiducial markers on a movable instrument. The fiducial markers may be tracked according to surface texture.

236 citations

Journal ArticleDOI
TL;DR: Preliminary data suggest that autofluorescence bronchoscopy–guided OCT imaging of bronchial lesions is technically feasible and OCT may be a promising nonbiopsy tool for in vivo imaging of preneoplastic bronchia lesions to study their natural history and the effect of chemopreventive intervention.
Abstract: Purpose: Optical coherence tomography (OCT) is an optical imaging method that can visualize cellular and extracellular structures at and below tissue surface. The objective of the study was to determine if OCT could characterize preneoplastic changes in the bronchial epithelium identified by autofluorescence bronchoscopy. Experimental Design: A 1.5-mm fiberoptic probe was inserted via a bronchoscope into the airways of 138 volunteer heavy smokers participating in a chemoprevention trial and 10 patients with lung cancer to evaluate areas that were found to be normal or abnormal on autofluorescence bronchoscopy. Radial scanning of the airways was done to generate OCT images in real time. Following OCT imaging, the same sites were biopsied for pathologic correlation. Results: A total of 281 OCT images and the corresponding bronchial biopsies were obtained. The histopathology of these areas includes 145 normal/hyperplasia, 61 metaplasia, 39 mild dysplasia, 10 moderate dysplasia, 6 severe dysplasia, 7 carcinoma in situ , and 13 invasive carcinomas. Quantitative measurement of the epithelial thickness showed that invasive carcinoma was significantly different than carcinoma in situ ( P = 0.004) and dysplasia was significantly different than metaplasia or hyperplasia ( P = 0.002). In addition, nuclei of the cells corresponding to histologic results became more discernible in lesions that were moderate dysplasia or worse compared with lower-grade lesions. Conclusion: Preliminary data suggest that autofluorescence bronchoscopy–guided OCT imaging of bronchial lesions is technically feasible. OCT may be a promising nonbiopsy tool for in vivo imaging of preneoplastic bronchial lesions to study their natural history and the effect of chemopreventive intervention.

192 citations

Journal ArticleDOI
TL;DR: OCE techniques, including the development of intravascular- or catheter-based OCE, are in their early stages of development but show great promise for surgical oncology or intrav vascular cardiology applications.
Abstract: Optical coherence tomography (OCT) has several advantages over other imaging modalities, such as angiography and ultrasound, due to its inherently high in vivo resolution, which allows for the identification of morphological tissue structures. Optical coherence elastography (OCE) benefits from the superior spatial resolution of OCT and has promising applications, including cancer diagnosis and the detailed characterization of arterial wall biomechanics, both of which are based on the elastic properties of the tissue under investigation. We present OCE principles based on techniques associated with static and dynamic tissue excitation, and their corresponding elastogram image-reconstruction algorithms are reviewed. OCE techniques, including the development of intravascular- or catheter-based OCE, are in their early stages of development but show great promise for surgical oncology or intravascular cardiology applications.

186 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The basic premise of this review is that a combination of imaging and PDT will provide improved research and therapeutic strategies.
Abstract: 1.1 Photodynamic Therapy and Imaging The purpose of this review is to present the current state of the role of imaging in photodynamic therapy (PDT). In order for the reader to fully appreciate the context of the discussions embodied in this article we begin with an overview of the PDT process, starting with a brief historical perspective followed by detailed discussions of specific applications of imaging in PDT. Each section starts with an overview of the specific topic and, where appropriate, ends with summary and future directions. The review closes with the authors’ perspective of the areas of future emphasis and promise. The basic premise of this review is that a combination of imaging and PDT will provide improved research and therapeutic strategies. PDT is a photochemistry-based approach that uses a light-activatable chemical, termed a photosensitizer (PS), and light of an appropriate wavelength, to impart cytotoxicity via the generation of reactive molecular species (Figure 1a). In clinical settings, the PS is typically administered intravenously or topically, followed by illumination using a light delivery system suitable for the anatomical site being treated (Figure 1b). The time delay, often referred to as drug-light interval, between PS administration and the start of illumination with currently used PSs varies from 5 minutes to 24 hours or more depending on the specific PS and the target disease. Strictly speaking, this should be referred to as the PS-light interval, as at the concentrations typically used the PS is not a drug, but the drug-light interval terminology seems to be used fairly frequently. Typically, the useful range of wavelengths for therapeutic activation of the PS is 600 to 800 nm, to avoid interference by endogenous chromophores within the body, and yet maintain the energetics necessary for the generation of cytotoxic species (as discussed below) such as singlet oxygen (1O2). However, it is important to note that photosensitizers can also serve as fluorescence imaging agents for which activation with light in the 400nm range is often used and has been extremely useful in diagnostic imaging applications as described extensively in Section 2 of this review. The obvious limitation of short wavelength excitation is the lack of tissue penetration so that the volumes that are probed under these conditions are relatively shallow. Open in a separate window Figure 1 (A) A schematic representation of PDT where PS is a photoactivatable multifunctional agent, which, upon light activation can serve as both an imaging agent and a therapeutic agent. (B) A schematic representation of the sequence of administration, localization and light activation of the PS for PDT or fluorescence imaging. Typically the PS is delivered systemically and allowed to circulate for an appropriate time interval (the “drug-light interval”), during which the PS accumulates preferentially in the target lesion(s) prior to light activation. In the idealized depiction here the PS is accumulation is shown to be entirely in the target tissue, however, even if this is not the case, light delivery confers a second layer of selectivity so that the cytotoxic effect will be generated only in regions where both drug and light are present. Upon localization of the PS, light activation will result in fluorescence emission which can be implemented for imaging applications, as well as generation cytotoxic species for therapy. In the former case light activation is achieved with a low fluence rate to generate fluorescence emission with little or no cytotoxic effect, while in the latter case a high fluence rate is used to generate a sufficient concentration of cytotoxic species to achieve biological effects.

1,922 citations

Journal ArticleDOI
TL;DR: In this paper, a split-spectrum amplitude-decorrelation angiography (SSADA) was proposed to improve the signal-to-noise ratio (SNR) of flow detection.
Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.

1,507 citations

Journal ArticleDOI
TL;DR: In none of the 12 eyes could the radial peripapillary capillary network be visualized completely around the nerve head by fluorescein angiography, whereas the network was readily visualized in the SSADA scans.
Abstract: Importance The retinal vasculature is involved in many ocular diseases that cause visual loss. Although fluorescein angiography is the criterion standard for evaluating the retina vasculature, it has risks of adverse effects and known defects in imaging all the layers of the retinal vasculature. Optical coherence tomography (OCT) angiography can image vessels based on flow characteristics and may provide improved information. Objective To investigate the ability of OCT angiography to image the vascular layers within the retina compared with conventional fluorescein angiography. Design, Setting, and Participants In this study, performed from March 14, 2014, through June 24, 2014, a total of 5 consecutive, overlapping B-scan OCT angiography images composed of 216 A-scans were obtained at 216 discrete positions within a region of interest, typically a 2 × 2-mm area of the retina. The flow imaging was based on split-spectrum amplitude decorrelation angiography (SSADA), which can dissect layers of vessels in the retina. These distinct layers were compared with the fluorescein angiograms in 12 healthy eyes from patients at a private practice retina clinic to evaluate the ability to visualize the radial peripapillary capillary network. The proportion of the inner vs outer retinal vascular layers was estimated by 3 masked readers and compared with conventional fluorescein angiograms of the same eyes. Main Outcomes and Measures Outcome measures were visualization of the radial peripapillary capillary network in the fluorescein and SSADA scans and the proportion of the inner retinal vascular plexus vs the outer retinal capillary plexus as seen in SSADA scans that would match the fluorescein angiogram. Results In none of the 12 eyes could the radial peripapillary capillary network be visualized completely around the nerve head by fluorescein angiography, whereas the network was readily visualized in the SSADA scans. The fluorescein angiograms were matched, with a mean proportion of the inner vascular plexus being 95.3% (95% CI, 92.2%-97.8%) vs 4.7% (95% CI, 2.6%-5.7%) for the outer capillary plexus from the SSADA scans. Conclusions and Relevance Fluorescein angiography does not image the radial peripapillary or the deep capillary networks well. However, OCT angiography can image all layers of the retinal vasculature without dye injection. Therefore, OCT angiography, and the findings generated, have the potential to affect clinical evaluation of the retina in healthy patients and patients with disease.

1,322 citations

Journal Article
TL;DR: In this article, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter, which was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
Abstract: Current medical imaging technologies allow visualization of tissue anatomy in the human body at resolutions ranging from 100 micrometers to 1 millimeter. These technologies are generally not sensitive enough to detect early-stage tissue abnormalities associated with diseases such as cancer and atherosclerosis, which require micrometer-scale resolution. Here, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter. This method, referred to as "optical biopsy," was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.

1,285 citations

Journal Article
TL;DR: In this paper, a split-spectrum amplitude-decorrelation angiography (SSADA) was proposed to improve the signal-to-noise ratio (SNR) of flow detection.
Abstract: Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.

1,151 citations