scispace - formally typeset
Search or ask a question
Author

Behrouz Takabi

Bio: Behrouz Takabi is an academic researcher from Texas A&M University. The author has contributed to research in topics: Machining & Heat transfer. The author has an hindex of 10, co-authored 16 publications receiving 503 citations. Previous affiliations of Behrouz Takabi include Islamic Azad University & University of Tehran.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effects of Rayleigh number (103≤Ra≤106) and water, nanofluid, and hybrid nanoparticles as the working fluid on temperature fields and heat transfer performance of the enclosure are investigated.
Abstract: This paper numerically examines laminar natural convection in a sinusoidal corrugated enclosure with a discrete heat source on the bottom wall, filled by pure water, Al2O3/water nanofluid, and Al2O3-Cu/water hybrid nanofluid which is a new advanced nanofluid with two kinds of nanoparticle materials. The effects of Rayleigh number (103≤Ra≤106) and water, nanofluid, and hybrid nanofluid (in volume concentration of 0% ≤ ϕ ≤ 2%) as the working fluid on temperature fields and heat transfer performance of the enclosure are investigated. The finite volume discretization method is employed to solve the set of governing equations. The results indicate that for all Rayleigh numbers been studied, employing hybrid nanofluid improves the heat transfer rate compared to nanofluid and water, which results in a better cooling performance of the enclosure and lower temperature of the heated surface. The rate of this enhancement is considerably more at higher values of Ra and volume concentrations. Furthermore, by applying ...

343 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance.
Abstract: In this paper, forced convection of a turbulent flow of pure water, Al2O3/water nanofluid and Al2O3–Cu/water hybrid nanofluid (a new advanced nanofluid composited of Cu and Al2O3 nanoparticles) through a uniform heated circular tube is numerically analyzed. This paper examines the effects of these three fluids as the working fluids, a wide range of Reynolds number (10 000 ≤ Re ≤ 10 0000) and also the volume concentration (0% ≤ ϕ ≤ 2%) on heat transfer and hydrodynamic performance. The finite volume discretization method is employed to solve the set of the governing equations. The results indicate that employing hybrid nanofluid improves the heat transfer rate with respect to pure water and nanofluid, yet it reveals an adverse effect on friction factor and appears severely outweighed by pressure drop penalty. However, the average increase of the average Nusselt number (when compared to pure water) in Al2O3–Cu/water hybrid nanofluid is 32.07% and the amount for the average increase of friction factor would be 13.76%.

156 citations

Journal ArticleDOI
TL;DR: In this article, the effect of using hybrid water-based suspension on thermal behavior and hydrodynamic performance in a range of Reynolds number in the laminar regime is investigated.
Abstract: A numerical investigation of a laminar forced convection of different working fluids including pure water, various volume concentrations of a nanofluid (Al2O3 nanoparticles dispersed in water), and a hybrid water-based suspension of Al2O3 and Cu nanoparticles (which is a new advanced nanofluid with two kinds of nanoparticle materials) in a uniformly heated circular tube is accomplished. In this paper, the effect of using hybrid water-based suspension on thermal behavior and hydrodynamic performance in a range of Reynolds number in the laminar regime is investigated. Then, a comparison is made between the thermal and hydrodynamics behavior of the hybrid suspension with those of the nanofluid (with the same concentration) and the conventional one. It is observed that, for all Reynolds numbers studied, employing the hybrid suspension improves the heat transfer rate compared to pure water and the nanofluid. Nevertheless, it reveals an adverse effect on the wall shear stress and friction factor due to the pres...

68 citations

Journal ArticleDOI
TL;DR: This review paper is focused on the mechanical concepts and modeling techniques utilized to simulate tissue cutting such as cutting forces and chip morphology, and presents a broad and in-depth vision of the methods suitable for tissue and bone cutting simulations.

42 citations

Journal ArticleDOI
TL;DR: The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles.
Abstract: This work investigates a two dimensional numerical analysis of blood hammer through the posterior cerebral artery. The non-Newtonian and usual Newtonian blood models are compared in the case of blood hammer through the posterior cerebral artery to quantify the differences between the models. In this way, a validated CFD simulation is used to study non-Newtonian shear-thinning effects of blood. The governing equations for the modeling of two-dimensional transient flow are solved using a combination of characteristics and central finite difference methods, respectively for the hyperbolic and parabolic parts. Herein, the non-Newtonian viscosity characteristic of blood is incorporated by using the Carreau model. To convert the nonlinear terms available in the characteristics equation into the linear ones, the Newton–Kantorovich method is implemented. The verification and validation of the numerical results are carried out in detail. Hemodynamic characteristics of blood hammer through the posterior cerebral artery are derived with both the Newtonian and non-Newtonian models, and the results are meticulously compared and discussed. The results show that when blood hammer occurs, the non-Newtonian properties greatly influence the velocity and shear stress profiles. At the early stages of blood hammer, there is a 64% difference between magnitudes of wall shear stress in these two models, and the magnitude of the wall shear stress for the shear-thinning blood flow is lower than the Newtonian one.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations

01 Jan 2016
TL;DR: The principles of enhanced heat transfer is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading principles of enhanced heat transfer. As you may know, people have look numerous times for their chosen books like this principles of enhanced heat transfer, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some infectious bugs inside their desktop computer. principles of enhanced heat transfer is available in our book collection an online access to it is set as public so you can get it instantly. Our books collection spans in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the principles of enhanced heat transfer is universally compatible with any devices to read.

553 citations

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the contemporary investigations on synthesis, thermo-physical properties, heat transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by researchers on different hybrid nanofluids.
Abstract: Nanofluids have found crucial presence in heat transfer applications with their promising characteristics that can be controlled as per requirements. Nanofluids possess unique characteristics that have attracted many researchers over the past two decades to design new thermal systems for different engineering applications. Mono nanofluids, prepared with a single kind of nanoparticles, possess certain specific benefits owing to the properties of the suspended nanoparticle. However to further improve the characteristics of nanofluids, that could possess a number of favourable characteristics, researchers developed a new generation heat transfer fluid called hybrid nanofluid. Hybrid nanofluids are prepared either by dispersing dissimilar nanoparticles as individual constituents or by dispersing nanocomposite particles in the base fluid. Hybrid nanofluids may possess better thermal network and rheological properties due to synergistic effect. Researchers, to adjudge the advantages, disadvantages and their suitability for diversified applications, are extensively investigating the behavior and properties of these hybrid nanofluids. This review summarizes the contemporary investigations on synthesis, thermo-physical properties, heat transfer characteristics, hydrodynamic behavior and fluid flow characteristics reported by researchers on different hybrid nanofluids. This review also outlines the applications and challenges associated with hybrid nanofluid and makes some suggestions for future scope of research in this area.

402 citations

Journal ArticleDOI
TL;DR: In this paper, an emerging concept of hybrid nanofluid with a new improved model of its thermophysical properties is introduced in the present work, which has been employed for the enhancement of heat transfer rate.
Abstract: Abstract An emerging concept of hybrid nanofluid with a new improved model of its thermophysical properties are introduced in the present work. Hybrid nanofluid is an advanced type of conventional heat transfer fluids, which has been employed for the enhancement of heat transfer rate. Two distinct fluids, namely hybrid nanofluid (Cu−Al2O3/water)$({\\rm{Cu - A}}{{\\rm{l}}_{\\rm{2}}}{{\\rm{O}}_{\\rm{3}}}{\\rm{/water}})$ and nanofluid (Cu/water) are used to investigate the parametric features of the flow and heat transfer phenomena over a permeable stretching sheet in the presence of magnetic field. The effects of various physical parameters and effecting physical quantities of interest are analyzed. From this study it is observed that the heat transfer rate of hybrid nanofluid (Cu−Al2O3/water)$({\\rm{Cu - A}}{{\\rm{l}}_{\\rm{2}}}{{\\rm{O}}_{\\rm{3}}}{\\rm{/water}})$ is higher than that of Nanofluid (Cu/water) under magnetic field environment. More combinations of different nanocomposites can be tried so that the desired heat transfer rate can be achieved.

397 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations are discussed.
Abstract: In the past decade, research on nanofluids has been increased rapidly and reports reveal that nanofluids are beneficial heat transfer fluids for engineering applications. The heat transfer enhancement of nanofluids is primarily dependent on thermal conductivity of nanoparticles, particle volume concentrations and mass flow rates. Under constant particle volume concentrations and flow rates, the heat transfer enhancement only depends on the thermal conductivity of the nanoparticles. The thermal conductivity of nanoparticles may be altered or changed by preparing hybrid (composite) nanoparticles. Hybrid nanoparticles are defined as nanoparticles composed by two or more different materials of nanometer size. The fluids prepared with hybrid nanoparticles are known as hybrid nanofluids. The motivation for the preparation of hybrid nanofluids is to obtain further heat transfer enhancement with augmented thermal conductivity of these nanofluids. This review covers the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations. The review also demonstrates that hybrid nanofluids are more effective heat transfer fluids than single nanoparticles based nanofluids or conventional fluids. Notwithstanding, full understanding of the mechanisms associated with heat transfer enhancement of hybrid nanofluids is still lacking and, consequently it is required a considerable research effort in this area.

365 citations