scispace - formally typeset
Search or ask a question
Author

Bela G. Fejer

Other affiliations: Cornell University, University of Pittsburgh, Max Planck Society  ...read more
Bio: Bela G. Fejer is an academic researcher from Utah State University. The author has contributed to research in topics: Ionosphere & F region. The author has an hindex of 64, co-authored 186 publications receiving 14422 citations. Previous affiliations of Bela G. Fejer include Cornell University & University of Pittsburgh.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F.
Abstract: We use radar observations from the Jicamarca Observatory from 1968 to 1992 to study the effects of the F region vertical plasma drift velocity on the generation and evolution of equatorial spread F The dependence of these irregularities on season, solar cycle, and magnetic activity can be explained as resulting from the corresponding effects on the evening and nighttime vertical drifts In the early night sector, the bottomside of the F layer is almost always unstable The evolution of the unstable layer is controlled by the history of the vertical drift velocity When the drift velocities are large enough, the necessary seeding mechanisms for the generation of strong spread F always appear to be present The threshold drift velocity for the generation of strong early night irregularities increases linearly with solar flux The geomagnetic control on the generation of spread F is season, solar cycle, and longitude dependent These effects can be explained by the response of the equatorial vertical drift velocities to magnetospheric and ionospheric disturbance dynamo electric fields The occurrence of early night spread F decreases significantly during equinox solar maximum magnetically disturbed conditions due to disturbance dynamo electric fields which decrease the upward drift velocities near sunset The generation of late night spread F requires the reversal of the vertical velocity from downward to upward for periods longer than about half an hour These irregularities occur most often at ∼0400 local time when the prompt penetration and disturbance dynamo vertical drifts have largest amplitudes The occurrence of late night spread F is highest near solar minimum and decreases with increasing solar activity probably due to the large increase of the nighttime downward drifts with increasing solar flux

656 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a global empirical model for the F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite.
Abstract: We present the first global empirical model for the quiet time F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite. This analytical model, based on products of cubic-B splines and with nearly conservative electric fields, describes the diurnal and seasonal variations of the equatorial vertical drifts for a continuous range of all longitudes and solar flux values. Our results indicate that during solar minimum, the evening prereversal velocity enhancement exhibits only small longitudinal variations during equinox with amplitudes of about 15–20 m/s, is observed only in the American sector during December solstice with amplitudes of about 5–10 m/s, and is absent at all longitudes during June solstice. The solar minimum evening reversal times are fairly independent of longitude except during December solstice. During solar maximum, the evening upward vertical drifts and reversal times exhibit large longitudinal variations, particularly during the solstices. In this case, for a solar flux index of 180, the June solstice evening peak drifts maximize in the Pacific region with drift amplitudes of up to 35 m/s, whereas the December solstice velocities maximize in the American sector with comparable magnitudes. The equinoctial peak velocities vary between about 35 and 45 m/s. The morning reversal times and the daytime drifts exhibit only small variations with the phase of the solar cycle. The daytime drifts have largest amplitudes between about 0900 and 1100 LT with typical values of 25–30 m/s. We also show that our model results are in good agreement with other equatorial ground-based observations over India, Brazil, and Kwajalein.

571 citations

Journal ArticleDOI
TL;DR: The seasonal average of the equatorial F region vertical and zonal plasma drifts were determined using extensive incoherent scatter radar observations from Jicamarca during 1968-1988.
Abstract: The seasonal averages of the equatorial F region vertical and zonal plasma drifts are determined using extensive incoherent scatter radar observations from Jicamarca during 1968-1988. The late afternoon and nighttime vertical and zonal drifts are strongly dependent on the 10.7-cm solar flux. The authors show that the evening prereversal enhancement of vertical drifts increases linearly with solar flux during equinox but tends to saturate for large fluxes during southern hemisphere winter. They examine in detail, for the first time, the seasonal variation of the zonal plasma drifts and their dependence on solar flux and magnetic activity. The seasonal effects on the zonal drifts are most pronounced in the midnight-morning sector. The nighttime eastward drifts increase with solar flux for all seasons but decrease slightly with magnetic activity. The daytime westward drifts are essentially independent of season, solar cycle, and magnetic activity.

550 citations

Journal ArticleDOI
TL;DR: In this paper, the authors suggest that anomalous reversals of the zonal equatorial electric field component are associated with a sudden change in the convection electric field in the magnetosphere and present measurements to support this explanation.
Abstract: Anomalous reversals of the zonal equatorial electric field component have some- times been observed when the interplanetary mag- netic field turns northward from a steady south- erly direction. We suggest that this reversal is associated with a sudden change in the convection electric field in the magnetosphere and present measurements to support this explanation. Al- though slower variations in the convection field are shielded from the low latitude ionosphere by polarization charges at the inner edge of the ring current, these charges may require an hour or more to vary. A sudden decrease in the cross- tail electric field will thus be accompanied by a dusk-dawn perturbation electric field across the inner magnet o s phe re.

440 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the interplanetary shock/electric field event of 5-6 November 2001 using GPS receiver data from CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite.
Abstract: The interplanetary shock/electric field event of 5-6 November 2001 is analyzed using ACE interplanetary data. The consequential ionospheric effects are studied using GPS receiver data from the CHAMP and SAC-C satellites and altimeter data from the TOPEX/ Poseidon satellite. Data from ~100 ground-based GPS receivers as well as Brazilian Digisonde and Pacific sector magnetometer data are also used. The dawn-to-dusk interplanetary electric field was initially ~33 mV/m just after the forward shock (IMF BZ = -48 nT) and later reached a peak value of ~54 mV/m 1 hour and 40 min later (BZ = -78 nT). The electric field was ~45 mV/m (BZ = -65 nT) 2 hours after the shock. This electric field generated a magnetic storm of intensity DST = -275 nT. The dayside satellite GPS receiver data plus ground-based GPS data indicate that the entire equatorial and midlatitude (up to +/-50(deg) magnetic latitude (MLAT)) dayside ionosphere was uplifted, significantly increasing the electron content (and densities) at altitudes greater than 430 km (CHAMP orbital altitude). This uplift peaked ~2 1/2 hours after the shock passage. The effect of the uplift on the ionospheric total electron content (TEC) lasted for 4 to 5 hours. Our hypothesis is that the interplanetary electric field ''promptly penetrated'' to the ionosphere, and the dayside plasma was convected (by E x B) to higher altitudes. Plasma upward transport/convergence led to a ~55-60% increase in equatorial ionospheric TEC to values above ~430 km (at 1930 LT). This transport/convergence plus photoionization of atmospheric neutrals at lower altitudes caused a 21% TEC increase in equatorial ionospheric TEC at ~1400 LT (from ground-based measurements). During the intense electric field interval, there was a sharp plasma ''shoulder'' detected at midlatitudes by the GPS receiver and altimeter satellites. This shoulder moves equatorward from -54(deg) to -37(deg) MLAT during the development of the main phase of the magnetic storm. We presume this to be an ionospheric signature of the plasmapause and its motion. The total TEC increase of this shoulder is ~80%. Part of this increase may be due to a "superfountain effect." The dayside ionospheric TEC above ~430 km decreased to values ~45% lower than quiet day values 7 to 9 hours after the beginning of the electric field event. The total equatorial ionospheric TEC decrease was ~16%. This decrease occurred both at midlatitudes and at the equator. We presume that thermospheric winds and neutral composition changes produced by the storm-time Joule heating, disturbance dynamo electric fields, and electric fields at auroral and subauroral latitudes are responsible for these decreases.

433 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The International Reference Ionosphere (IRI) is the international standard for the specification of ionospheric densities and temperatures as mentioned in this paper, which was developed and is being improved-updated by a joint working group of the International Union of Radio Science (URSI) and the Committee on Space Research (COSPAR).
Abstract: The International Reference Ionosphere (IRI) is the international standard for the specification of ionospheric densities and temperatures. It was developed and is being improved-updated by a joint working group of the International Union of Radio Science (URSI) and the Committee on Space Research (COSPAR). A new version of IRI is scheduled for release in the year 2000. This paper describes the most important changes compared to the current version of IRI: (1) an improved representation of the electron density in the region from the F peak down to the E peak including a better description of the F1 layer occurrence statistics and a more realistic description of the low-latitude bottomside thickness, (2) inclusion of a model for storm-time conditions, (3) inclusion of an ion drift model, (4) two new options for the electron density in the D region, and (5) an improved model for the topside electron temperatures. The outcome of the most recent IRI Workshops (Kuhlungsborn, 1997, and Nagoya, 1998) will be reviewed, and the status of several ongoing task force activities (e.g., efforts to improve the representation of electron and ion densities in the topside ionosphere and the inclusion of a plasmaspheric extension) will be discussed. A few typical IRI applications will be highlighted in section 6.

1,226 citations

Journal ArticleDOI
TL;DR: The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere as mentioned in this paper.
Abstract: The Dual Auroral Radar Network (DARN) is a global-scale network of HF and VHF radars capable of sensing backscatter from ionospheric irregularities in the E and F-regions of the high-latitude ionosphere. Currently, the network consists of the STARE VHF radar system in northern Scandinavia, a northern-hemisphere, longitudinal chain of HF radars that is funded to extend from Saskatoon, Canada to central Finland, and a southern-hemisphere chain that is funded to include Halley Station, SANAE and Syowa Station in Antarctica. When all of the HF radars have been completed they will operate in pairs with common viewing areas so that the Doppler information contained in the backscattered signals may be combined to yield maps of high-latitude plasma convection and the convection electric field. In this paper, the evolution of DARN and particularly the development of its SuperDARN HF radar element is discussed. The DARN/SupperDARN network is particularly suited to studies of large-scale dynamical processes in the magnetosphere-ionosphere system, such as the evolution of the global configuration of the convection electric field under changing IMF conditions and the development and global extent of large-scale MHD waves in the magnetosphere-ionosphere cavity. A description of the HF radars within SuperDARN is given along with an overview of their existing and intended locations, intended start of operations, Principal Investigators, and sponsoring agencies. Finally, the operation of the DARN experiment within ISTP/GGS, the availability of data, and the form and availability of the Key Parameter files is discussed.

1,051 citations

Journal ArticleDOI
TL;DR: In this article, a numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbance dynamo.
Abstract: A numerical simulation study of the thermospheric winds produced by auroral heating during magnetic storms, and of their global dynamo effects, establishes the main features of the ionospheric disturbance dynamo. Driven by auroral heating, a Hadley cell is created with equatorward winds blowing above about 120 km at mid-latitudes. The transport of angular momentum by these winds produces a subrotation of the mid-latitude thermosphere or westward motion with respect to the earth. The westward winds in turn drive equatorward Pedersen currents which accumulate charge toward the equator, resulting in the generation of a poleward electric field, a westward E × B drift, and an eastward current. When realistic local time conductivity variations are simulated, the eastward mid-latitude current is found to close partly via lower latitudes, resulting in an ‘anti-Sq’ type of current vortex. Both electric field and current at low latitudes thus vary in opposition to their normal quiet-day behavior. This total pattern of disturbance winds, electric fields, and currents is superimposed upon the background quiet-day pattern. When the neutral winds are artificially confined on the nightside, the basic pattern of predominantly westward E × B plasma drifts still prevails on the nightside but no longer extends into the dayside. Considerable observational evidence exists, suggesting that the ionospheric disturbance dynamo has an appreciable influence on storm-time ionospheric electric fields at middle and low latitudes.

1,049 citations

Journal ArticleDOI
TL;DR: In this paper, the results of backscatter observations of the F region irregularities made with the large 50MHz radar at Jicamarca, Peru, during a few days of observations are presented.
Abstract: The paper presents some results of backscatter observations of the F region irregularities made with the large 50-MHz radar at Jicamarca, Peru, during a few days of observations. The results were obtained by using three observational techniques: the modified range-time-intensity technique, the digital power mapping technique, and the digital raw data recording technique. Backscatter intensity maps as a function of altitude and time are presented, which can be interpreted as radar pictures of F region irregularities. A classification of spread F spectral signatures resulting from approximately 30,000 spectra obtained in sets of 64 simultaneous heights under a variety of conditions is also given.

917 citations

Journal ArticleDOI
TL;DR: In this article, the authors model the coupling of both circular (local) and plane wave (nonlocal) gravity waves to the bottomside F layer as a mechanism for triggering equatorial plasma bubbles, and support the hypothesis that nonplane gravity waves can more strongly couple to the F layer than plane gravity waves.
Abstract: [1] The Naval Research Laboratory three-dimensional simulation code SAMI3/ESF is used to study the response of the postsunset ionosphere to circular gravity waves. We model the coupling of both circular (local) and plane wave (nonlocal) gravity waves to the bottomside F layer as a mechanism for triggering equatorial plasma bubbles. Results support the hypothesis that nonplane gravity waves can more strongly couple to the F layer than plane gravity waves. Results also show that the coupling of the seed wave to the F layer depends on the (nonlocal) growth rate and the local electron density at the position of the seed wave.

831 citations