scispace - formally typeset
Search or ask a question
Author

Belarmino Pulido

Other affiliations: Vanderbilt University
Bio: Belarmino Pulido is an academic researcher from University of Valladolid. The author has contributed to research in topics: Fault detection and isolation & Fault (power engineering). The author has an hindex of 15, co-authored 52 publications receiving 702 citations. Previous affiliations of Belarmino Pulido include Vanderbilt University.


Papers
More filters
Journal ArticleDOI
01 Oct 2004
TL;DR: The possible conflict concept is proposed as a compilation technique for consistency-based diagnosis and its relation to conflicts in the general diagnosis engine (GDE) framework is analyzed and compared with other compilation techniques.
Abstract: Consistency-based diagnosis is one of the most widely used approaches to model-based diagnosis within the artificial intelligence community. It is usually carried out through an iterative cycle of behavior prediction, conflict detection, candidate generation, and candidate refinement. In that process conflict detection has proven to be a nontrivial step from the theoretical point of view. For this reason, many approaches to consistency-based diagnosis have relied upon some kind of dependency-recording. These techniques have had different problems, specially when they were applied to diagnose dynamic systems. Recently, offline dependency compilation has established itself as a suitable alternative approach to online dependency-recording. In this paper we propose the possible conflict concept as a compilation technique for consistency-based diagnosis. Each possible conflict represents a subsystem within system description containing minimal analytical redundancy and being capable to become a conflict. Moreover, the whole set of possible conflicts can be computed offline with no model evaluation. Once we have formalized the possible conflict concept, we explain how possible conflicts can be used in the consistency-based diagnosis framework, and how this concept can be easily extended to diagnose dynamic systems. Finally, we analyze its relation to conflicts in the general diagnosis engine (GDE) framework and compare possible conflicts with other compilation techniques, especially with analytical redundancy relations (ARRs) obtained through structural analysis. Based on results from these comparisons we provide additional insights in the work carried out within the BRIDGE community to provide a common framework for model-based diagnosis for both artificial intelligence and control engineering approaches.

151 citations

Journal ArticleDOI
TL;DR: In this article, the issue of residual generation using structural analysis has been studied by several authors, and four recently proposed algorithms that solve this problem are presented and compared, and compared with each other.

60 citations

Journal ArticleDOI
01 Sep 2012
TL;DR: A model characterization and corresponding algorithms are developed for studying system diagnosability using a structural decomposition that avoids generating the full set of system analytical redundancy relations.
Abstract: This paper is focused on structural approaches to study diagnosability properties given a system model taking into account, both simultaneously or separately, integral and differential causal interpretations for differential constraints. We develop a model characterization and corresponding algorithms, for studying system diagnosability using a structural decomposition that avoids generating the full set of system analytical redundancy relations. Simultaneous application of integral and differential causal interpretations for differential constraints results in a mixed causality interpretation for the system. The added power of mixed causality is demonstrated using a Reverse Osmosis Subsystem from the Advanced Water Recovery System developed at the NASA Johnson Space Center. Finally, we summarize our work and provide a discussion of the advantages of mixed causality over just derivative or just integral causality.

47 citations

Journal ArticleDOI
TL;DR: Using Possible Conflicts, a structural model decomposition method from the Artificial Intelligence model-based diagnosis (DX) community, a distributed diagnoser design algorithm is developed to build local event-based diagnosers that are constructed based on global diagnosability analysis of the system.

45 citations

Journal ArticleDOI
TL;DR: It is proved that the structure of the Minimal Evaluable Model for a Possible Conflict can be used in real-world industrial systems to guide the design of the state space model of the neural network, reducing its complexity and avoiding the process of multiple unknown parameter estimation in the first principles models.

39 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A survey of the various model-based FDIR methods developed in the last decade is presented, and various techniques of implementing reconfigurable control strategy in response to faults are discussed.
Abstract: Fault detection, isolation, and reconfiguration (FDIR) is an important and challenging problem in many engineering applications and continues to be an active area of research in the control community. This paper presents a survey of the various model-based FDIR methods developed in the last decade. In the paper, the FDIR problem is divided into the fault detection and isolation (FDI) step, and the controller reconfiguration step. For FDI, we discuss various model-based techniques to generate residuals that are robust to noise, unknown disturbance, and model uncertainties, as well as various statistical techniques of testing the residuals for abrupt changes (or faults). We then discuss various techniques of implementing reconfigurable control strategy in response to faults.

1,217 citations

Journal ArticleDOI
TL;DR: This paper surveys expert systems (ES) development using a literature review and classification of articles from 1995 to 2004 with a keyword index and article abstract in order to explore how ES methodologies and applications have developed during this period.
Abstract: This paper surveys expert systems (ES) development using a literature review and classification of articles from 1995 to 2004 with a keyword index and article abstract in order to explore how ES methodologies and applications have developed during this period. Based on the scope of 166 articles from 78 academic journals (retrieved from five online database) of ES applications, this paper surveys and classifies ES methodologies using the following eleven categories: rule-based systems, knowledge-based systems, neural networks, fuzzy ESs, object-oriented methodology, case-based reasoning, system architecture, intelligent agent systems, database methodology, modeling, and ontology together with their applications for different research and problem domains. Discussion is presented, indicating the followings future development directions for ES methodologies and applications: (1) ES methodologies are tending to develop towards expertise orientation and ES applications development is a problem-oriented domain. (2) It is suggested that different social science methodologies, such as psychology, cognitive science, and human behavior could implement ES as another kind of methodology. (3) The ability to continually change and obtain new understanding is the driving power of ES methodologies, and should be the ES application of future works.

967 citations

10 Jun 2005
TL;DR: This work focuses on the design of a new approximation algorithm that reduces the cost of functional evaluations and yet increases the attainable order higher, and the classical ERK methods.
Abstract: During the last decade, a big progress has been achieved in the analysis and numerical treatment of Initial Value Problems (IVPs) in Differential Algebraic Equations (DAEs) and Ordinary Differential Equations (ODEs). In spite of the rich variety of results available in the literature, there are still many specific problems that require special attention. Two of such, which are considered in this work, are the optimization of order of accuracy and reduction of cost of functional evaluations of Explicit Runge - Kutta (ERK) methods. Traditionally, the maximum attainable order p of an s-stage ERK method for advancing the solution of an IVP is such that p(s) 4 In 1999, Goeken presented an s-stage ERK Method of order p(s)=s +1,s>2. However, this work focuses on the design of a new approximation algorithm that reduces the cost of functional evaluations and yet increases the attainable order higher U n and Jonhson [94]; and the classical ERK methods. The order p of the new scheme called Multiderivative Explicit Runge-Kutta (MERK) Methods is such that p(s) 2. The stability, convergence and implementation for the optimization of IVPs in DAEs and ODEs systems are also considered.

665 citations

Journal ArticleDOI
TL;DR: A brief review of the existing work on sequence classification in terms of methodologies and application domains is presented and several extensions of the sequence classification problem are provided, such as early classification on sequences and semi-supervised learning on sequences.
Abstract: Sequence classification has a broad range of applications such as genomic analysis, information retrieval, health informatics, finance, and abnormal detection. Different from the classification task on feature vectors, sequences do not have explicit features. Even with sophisticated feature selection techniques, the dimensionality of potential features may still be very high and the sequential nature of features is difficult to capture. This makes sequence classification a more challenging task than classification on feature vectors. In this paper, we present a brief review of the existing work on sequence classification. We summarize the sequence classification in terms of methodologies and application domains. We also provide a review on several extensions of the sequence classification problem, such as early classification on sequences and semi-supervised learning on sequences.

575 citations