scispace - formally typeset
Search or ask a question
Author

Belinda Phipson

Bio: Belinda Phipson is an academic researcher from Royal Children's Hospital. The author has contributed to research in topics: Bioconductor & Progenitor cell. The author has an hindex of 27, co-authored 51 publications receiving 18485 citations. Previous affiliations of Belinda Phipson include University of Melbourne & Walter and Eliza Hall Institute of Medical Research.


Papers
More filters
Posted ContentDOI
06 Sep 2014-bioRxiv
TL;DR: DiffVar is a novel method to test for differential variability between sample groups that employs an empirical Bayes model framework that can take into account any experimental design and is robust to outliers.
Abstract: Methylation of DNA is known to be essential to development and dramatically altered in cancers. The Illumina HumanMethylation450 BeadChip has been used extensively as a cost-effective way to profile nearly half a million CpG sites across the human genome. Here we present DiffVar, a novel method to test for differential variability between sample groups. DiffVar employs an empirical Bayes model framework that can take into account any experimental design and is robust to outliers. We applied DiffVar to several datasets from The Cancer Genome Atlas, as well as an aging dataset. DiffVar is available in the missMethyl Bioconductor R package.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors show that the histone acetyltransferase KAT7 (HBO1/MYST2) is required genome wide for histone H3 lysine 14 acetylation (H3K14ac).

1 citations

Posted ContentDOI
25 May 2016-bioRxiv
TL;DR: This paper provides a Bioconductor workflow using multiple packages for the analysis of methylation array data including: quality control, filtering, normalization, data exploration and statistical testing for probe-wise differential methylation.
Abstract: Methylation in the human genome is known to be associated with development and disease. The Illumina Infinium methylation arrays are by far the most common way to interrogate methylation across the human genome. This paper provides a Bioconductor workflow using multiple packages for the analysis of methylation array data. Specifically, we demonstrate the steps involved in a typical differential methylation analysis workflow including: quality control, filtering, normalization, data exploration and statistical testing for probe-wise differential methylation. We further outline other analyses such as differential methylation of regions, differential variability analysis, estimating cell type composition and gene ontology testing. Finally, we provide some examples of how to visualise methylation array data.

1 citations

Posted ContentDOI
18 Mar 2023-bioRxiv
TL;DR: In this article , the authors explore the relationship between library size and independently annotated spatial regions, across 23 samples from 4 different spatial technologies with varying throughput and spatial resolution, and find that tissue region is strongly associated with library size across all technologies.
Abstract: Spatial molecular technologies have revolutionised the study of disease microenvironments by providing spatial context to tissue heterogeneity. Recent spatial technologies are increasing the throughput and spatial resolution of measurements, resulting in larger datasets. The added spatial dimension and volume of measurements poses an analytics challenge that has, in the short-term, been addressed by adopting methods designed for the analysis of single-cell RNA-seq data. Though these methods work well in some cases, not all necessarily translate appropriately to spatial technologies. A common assumption is that total sequencing depth, also known as library size, represents technical variation in single-cell RNA-seq technologies, and this is often normalised out during analysis. Through analysis of several different spatial datasets, we noted that this assumption does not necessarily hold in spatial molecular data. To formally assess this, we explore the relationship between library size and independently annotated spatial regions, across 23 samples from 4 different spatial technologies with varying throughput and spatial resolution. We found that library size confounded biology across all technologies, regardless of the tissue being investigated. Statistical modelling of binned total transcripts shows that tissue region is strongly associated with library size across all technologies, even after accounting for cell density of the bins. Through a benchmarking experiment, we show that normalising out library size leads to sub-optimal spatial domain identification using common graph-based clustering algorithms. On average, better clustering was achieved when library size effects were not normalised out explicitly, especially with data from the newer sub-cellular localised technologies. Taking these results into consideration, we recommend that spatial data should not be specifically corrected for library size prior to analysis unless strongly motivated. We also emphasise that spatial data are different to single-cell RNA-seq and care should be taken when adopting algorithms designed for single cell data.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Journal ArticleDOI
TL;DR: An analytical strategy for integrating scRNA-seq data sets based on common sources of variation is introduced, enabling the identification of shared populations across data sets and downstream comparative analysis.
Abstract: Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

7,741 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments, and the voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline.
Abstract: New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.

4,475 citations

Journal ArticleDOI
TL;DR: This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts.
Abstract: High-throughput sequencing of mRNA (RNA-seq) has become the standard method for measuring and comparing the levels of gene expression in a wide variety of species and conditions. RNA-seq experiments generate very large, complex data sets that demand fast, accurate and flexible software to reduce the raw read data to comprehensible results. HISAT (hierarchical indexing for spliced alignment of transcripts), StringTie and Ballgown are free, open-source software tools for comprehensive analysis of RNA-seq experiments. Together, they allow scientists to align reads to a genome, assemble transcripts including novel splice variants, compute the abundance of these transcripts in each sample and compare experiments to identify differentially expressed genes and transcripts. This protocol describes all the steps necessary to process a large set of raw sequencing reads and create lists of gene transcripts, expression levels, and differentially expressed genes and transcripts. The protocol's execution time depends on the computing resources, but it typically takes under 45 min of computer time. HISAT, StringTie and Ballgown are available from http://ccb.jhu.edu/software.shtml.

3,755 citations