scispace - formally typeset
Search or ask a question
Author

Ben D. Fulcher

Bio: Ben D. Fulcher is an academic researcher from University of Sydney. The author has contributed to research in topics: Connectome & Dimensionality reduction. The author has an hindex of 29, co-authored 91 publications receiving 2996 citations. Previous affiliations of Ben D. Fulcher include Australian Research Council & Monash University.


Papers
More filters
Journal ArticleDOI
TL;DR: These results indicate that simple linear regression of regional fMRI time series against head motion parameters and WM/CSF signals (with or without expansion terms) is not sufficient to remove head motion artefacts, and group comparisons in functional connectivity between healthy controls and schizophrenia patients are highly dependent on preprocessing strategy.

564 citations

Journal ArticleDOI
TL;DR: It is suggested that studies using the AHBA should work towards a unified data processing pipeline to ensure consistent and reproducible results in this burgeoning field of brain structure and function.

359 citations

Journal ArticleDOI
TL;DR: Reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, interms of their behaviour on empirical time series are introduced and used to organize these interdisciplinary resources.
Abstract: The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.

263 citations

Journal ArticleDOI
TL;DR: In this paper, a highly comparative feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series and selects those features that are most informative of the class structure using greedy forward feature selection with a linear classifier.
Abstract: A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large datasets containing long time series or time series of different lengths. For many of the datasets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using Euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the dataset, insight that can guide further scientific investigation.

237 citations

Journal ArticleDOI
TL;DR: A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series, allowing the method to perform well on very large data sets containing long time series or time series of different lengths.
Abstract: A highly comparative, feature-based approach to time series classification is introduced that uses an extensive database of algorithms to extract thousands of interpretable features from time series. These features are derived from across the scientific time-series analysis literature, and include summaries of time series in terms of their correlation structure, distribution, entropy, stationarity, scaling properties, and fits to a range of time-series models. After computing thousands of features for each time series in a training set, those that are most informative of the class structure are selected using greedy forward feature selection with a linear classifier. The resulting feature-based classifiers automatically learn the differences between classes using a reduced number of time-series properties, and circumvent the need to calculate distances between time series. Representing time series in this way results in orders of magnitude of dimensionality reduction, allowing the method to perform well on very large data sets containing long time series or time series of different lengths. For many of the data sets studied, classification performance exceeded that of conventional instance-based classifiers, including one nearest neighbor classifiers using euclidean distances and dynamic time warping and, most importantly, the features selected provide an understanding of the properties of the data set, insight that can guide further scientific investigation.

214 citations


Cited by
More filters
01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

01 Mar 1995
TL;DR: This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series and results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages.
Abstract: : This thesis applies neural network feature selection techniques to multivariate time series data to improve prediction of a target time series. Two approaches to feature selection are used. First, a subset enumeration method is used to determine which financial indicators are most useful for aiding in prediction of the S&P 500 futures daily price. The candidate indicators evaluated include RSI, Stochastics and several moving averages. Results indicate that the Stochastics and RSI indicators result in better prediction results than the moving averages. The second approach to feature selection is calculation of individual saliency metrics. A new decision boundary-based individual saliency metric, and a classifier independent saliency metric are developed and tested. Ruck's saliency metric, the decision boundary based saliency metric, and the classifier independent saliency metric are compared for a data set consisting of the RSI and Stochastics indicators as well as delayed closing price values. The decision based metric and the Ruck metric results are similar, but the classifier independent metric agrees with neither of the other metrics. The nine most salient features, determined by the decision boundary based metric, are used to train a neural network and the results are presented and compared to other published results. (AN)

1,545 citations

Journal ArticleDOI
22 Dec 2010-Neuron
TL;DR: The basic circuitry underlying the regulation of sleep and wakefulness is examined and a theoretical framework wherein the interactions between reciprocal neuronal circuits enable relatively rapid and complete state transitions is discussed.

1,107 citations

Journal ArticleDOI
TL;DR: This work implemented 18 recently proposed algorithms in a common Java framework and compared them against two standard benchmark classifiers (and each other) by performing 100 resampling experiments on each of the 85 datasets, indicating that only nine of these algorithms are significantly more accurate than both benchmarks.
Abstract: In the last 5 years there have been a large number of new time series classification algorithms proposed in the literature. These algorithms have been evaluated on subsets of the 47 data sets in the University of California, Riverside time series classification archive. The archive has recently been expanded to 85 data sets, over half of which have been donated by researchers at the University of East Anglia. Aspects of previous evaluations have made comparisons between algorithms difficult. For example, several different programming languages have been used, experiments involved a single train/test split and some used normalised data whilst others did not. The relaunch of the archive provides a timely opportunity to thoroughly evaluate algorithms on a larger number of datasets. We have implemented 18 recently proposed algorithms in a common Java framework and compared them against two standard benchmark classifiers (and each other) by performing 100 resampling experiments on each of the 85 datasets. We use these results to test several hypotheses relating to whether the algorithms are significantly more accurate than the benchmarks and each other. Our results indicate that only nine of these algorithms are significantly more accurate than both benchmarks and that one classifier, the collective of transformation ensembles, is significantly more accurate than all of the others. All of our experiments and results are reproducible: we release all of our code, results and experimental details and we hope these experiments form the basis for more robust testing of new algorithms in the future.

1,070 citations