scispace - formally typeset
Search or ask a question
Author

Ben Wegbreit

Bio: Ben Wegbreit is an academic researcher from Stanford University. The author has contributed to research in topics: Simultaneous localization and mapping & Monte Carlo localization. The author has an hindex of 5, co-authored 5 publications receiving 3363 citations.

Papers
More filters
Proceedings ArticleDOI
28 Jul 2002
TL;DR: FastSLAM as discussed by the authors is an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number of landmarks in the map.
Abstract: The ability to simultaneously localize a robot and accurately map its surroundings is considered by many to be a key prerequisite of truly autonomous robots. However, few approaches to this problem scale up to handle the very large number of landmarks present in real environments. Kalman filter-based algorithms, for example, require time quadratic in the number of landmarks to incorporate each sensor observation. This paper presents FastSLAM, an algorithm that recursively estimates the full posterior distribution over robot pose and landmark locations, yet scales logarithmically with the number of landmarks in the map. This algorithm is based on an exact factorization of the posterior into a product of conditional landmark distributions and a distribution over robot paths. The algorithm has been run successfully on as many as 50,000 landmarks, environments far beyond the reach of previous approaches. Experimental results demonstrate the advantages and limitations of the FastSLAM algorithm on both simulated and real-world data.

1,912 citations

Proceedings Article
09 Aug 2003
TL;DR: This paper describes a modified version of FastSLAM which overcomes important deficiencies of the original algorithm and proves convergence of this new algorithm for linear SLAM problems and provides real-world experimental results that illustrate an order of magnitude improvement in accuracy over the original Fast SLAM algorithm.
Abstract: Proceedings of IJCAI 2003 In [15], Montemerlo et al. proposed an algorithm called FastSLAM as an efficient and robust solution to the simultaneous localization and mapping problem. This paper describes a modified version of FastSLAM which overcomes important deficiencies of the original algorithm. We prove convergence of this new algorithm for linear SLAM problems and provide real-world experimental results that illustrate an order of magnitude improvement in accuracy over the original FastSLAM algorithm.

1,079 citations

Proceedings ArticleDOI
17 Oct 2005
TL;DR: A technique for reconstructing probable occluded surfaces from 3D range images and a technique for segmenting objects into parts characterized by different symmetries to accommodate objects consisting of multiple parts are described.
Abstract: We describe a technique for reconstructing probable occluded surfaces from 3D range images. The technique exploits the fact that many objects possess shape symmetries that can be recognized even from partial 3D views. Our approach identifies probable symmetries and uses them to attend the partial 3D shape model into the occluded space. To accommodate objects consisting of multiple parts, we describe a technique for segmenting objects into parts characterized by different symmetries. Results are provided for a real-world database of 3D range images of common objects, acquired through an active stereo rig

248 citations

01 Jan 2004
TL;DR: Two variants of FastSLAM are presented, the original algorithm along with a more recent variant that provides improved performance in certain operating regimes and a mathematical derivation of the new algorithm.
Abstract: This article provides a comprehensive description of FastSLAM, a new family of algorithms for the simultaneous localization and mapping problem, which specifically address hard data association problems. The algorithm uses a particle filter for sampling robot paths, and extended Kalman filters for representing maps acquired by the vehicle. This article presents two variants of this algorithm, the original algorithm along with a more recent variant that provides improved performance in certain operating regimes. In addition to a mathematical derivation of the new algorithm, we present a proof of convergence and experimental results on its performance on real-world data.

182 citations

Book ChapterDOI
01 Jan 2005
TL;DR: A criterion for detecting and repairing poor data association decisions is described, which makes it possible to acquire maps of large-scale environments with many loops, with a minimum of computational overhead for the management of multiple data association hypotheses.
Abstract: We present a lazy data association algorithm for the simultaneous localization and mapping (SLAM) problem. Our approach uses a tree-structured Bayesian representation of map posteriors that makes it possible to revise data association decisions arbitrarily far into the past. We describe a criterion for detecting and repairing poor data association decisions. This technique makes it possible to acquire maps of large-scale environments with many loops, with a minimum of computational overhead for the management of multiple data association hypotheses. A empirical comparison with the popular FastSLAM algorithm shows the advantage of lazy over proactive data association.

129 citations


Cited by
More filters
Book
24 Aug 2012
TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Abstract: Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package--PMTK (probabilistic modeling toolkit)--that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

8,059 citations

Proceedings ArticleDOI
13 Nov 2007
TL;DR: A system specifically designed to track a hand-held camera in a small AR workspace, processed in parallel threads on a dual-core computer, that produces detailed maps with thousands of landmarks which can be tracked at frame-rate with accuracy and robustness rivalling that of state-of-the-art model-based systems.
Abstract: This paper presents a method of estimating camera pose in an unknown scene. While this has previously been attempted by adapting SLAM algorithms developed for robotic exploration, we propose a system specifically designed to track a hand-held camera in a small AR workspace. We propose to split tracking and mapping into two separate tasks, processed in parallel threads on a dual-core computer: one thread deals with the task of robustly tracking erratic hand-held motion, while the other produces a 3D map of point features from previously observed video frames. This allows the use of computationally expensive batch optimisation techniques not usually associated with real-time operation: The result is a system that produces detailed maps with thousands of landmarks which can be tracked at frame-rate, with an accuracy and robustness rivalling that of state-of-the-art model-based systems.

4,091 citations

Journal ArticleDOI
TL;DR: The first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches is presented.
Abstract: We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to structure from motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera

3,772 citations

Journal ArticleDOI
TL;DR: This paper describes the simultaneous localization and mapping (SLAM) problem and the essential methods for solving the SLAM problem and summarizes key implementations and demonstrations of the method.
Abstract: This paper describes the simultaneous localization and mapping (SLAM) problem and the essential methods for solving the SLAM problem and summarizes key implementations and demonstrations of the method. While there are still many practical issues to overcome, especially in more complex outdoor environments, the general SLAM method is now a well understood and established part of robotics. Another part of the tutorial summarized more recent works in addressing some of the remaining issues in SLAM, including computation, feature representation, and data association

3,760 citations

Proceedings ArticleDOI
24 Dec 2012
TL;DR: A large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system is recorded for the evaluation of RGB-D SLAM systems.
Abstract: In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video frame rate (30 Hz). The ground-truth trajectory was obtained from a motion-capture system with eight high-speed tracking cameras (100 Hz). The dataset consists of 39 sequences that were recorded in an office environment and an industrial hall. The dataset covers a large variety of scenes and camera motions. We provide sequences for debugging with slow motions as well as longer trajectories with and without loop closures. Most sequences were recorded from a handheld Kinect with unconstrained 6-DOF motions but we also provide sequences from a Kinect mounted on a Pioneer 3 robot that was manually navigated through a cluttered indoor environment. To stimulate the comparison of different approaches, we provide automatic evaluation tools both for the evaluation of drift of visual odometry systems and the global pose error of SLAM systems. The benchmark website [1] contains all data, detailed descriptions of the scenes, specifications of the data formats, sample code, and evaluation tools.

3,050 citations