scispace - formally typeset
Search or ask a question
Author

Benedetta Mennucci

Bio: Benedetta Mennucci is an academic researcher from University of Pisa. The author has contributed to research in topics: Polarizable continuum model & Solvation. The author has an hindex of 75, co-authored 349 publications receiving 48307 citations. Previous affiliations of Benedetta Mennucci include University of Seville & Hungarian Academy of Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.
Abstract: The design of optimal light-harvesting (supra)molecular systems and materials is one of the most challenging frontiers of science. Theoretical methods and computational models play a fundamental role in this difficult task, as they allow the establishment of structural blueprints inspired by natural photosynthetic organisms that can be applied to the design of novel artificial light-harvesting devices. Among theoretical strategies, the application of quantum chemical tools represents an important reality that has already reached an evident degree of maturity, although it still has to show its real potentials. This Review presents an overview of the state of the art of this strategy, showing the actual fields of applicability but also indicating its current limitations, which need to be solved in future developments.

265 citations

Journal ArticleDOI
TL;DR: The QM/MM method is presented, which introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field.
Abstract: We present a combined quantum mechanics and molecular mechanics (QM/MM) method to study electronic energy transfer (EET) in condensed phases. The method introduces a quantum mechanically based linear response (LR) scheme to describe both chromophore electronic excitations and electronic couplings, while the environment is described through a classical polarizable force field. Explicit treatment of the solvent electronic polarization is a key aspect of the model, as this allows account of solvent screening effects in the coupling. The method is tested on a model perylene diimide (PDI) dimer in water solution. We find an excellent agreement between the QM/MM method and “exact” supermolecule calculations in which the complete solute−solvent system is described at the QM level. In addition, the estimation of the electronic coupling is shown to be very sensitive to the quality of the parameters used to describe solvent polarization. Finally, we compare ensemble-averaged QM/MM results to the predictions of the ...

241 citations

Journal ArticleDOI
TL;DR: In this paper, two new expressions for Pauli repulsion and dispersion contributions to the solvation free energy were derived by using the theory of intermolecular forces, which can be used directly in the SCF calculation of the solute wave function within the polarizable continuum model.
Abstract: By using the theory of intermolecular forces, two new expressions for Pauli repulsion and dispersion contributions to the solvation free energy are derived. These expressions contain explicitly the solute electron density and, therefore, can be used directly in the SCF calculation of the solute wave function within the polarizable continuum model (PCM). The final expressions are very simple and include also some intrinsic solvent properties which are, for repulsion, the density, the molecular weight, the number of valence electrons, and for dispersion, the refractive index and the ionization potential. This new approach does not depend on any given intermolecular potential and it can be adapted to any choice of basis set. For small-size basis sets, even minimal, the dispersion contribution is obtained in two steps and includes the effect of adding diffuse and polarization functions, not used in the wave function itself. This method has been implemented in our HONDO package, in a version which includes the...

240 citations

Journal ArticleDOI
TL;DR: In this article, a method for evaluating second-order Moller−Plesset (MP2) energy and gradients for solvated molecules described within the polarizable continuum model (PCM) is presented.
Abstract: We present a method for evaluating second-order Moller−Plesset (MP2) energy and gradients for solvated molecules described within the polarizable continuum model (PCM). The explicit inclusion of solvent effects into the evaluation of the relaxed MP2 density through the Z-vector technique is reported and analyzed. Applications to some one-electron response properties (dipoles, electrostatic molecular potentials, electric field gradients) as well as nuclear gradients are presented.

225 citations

Journal ArticleDOI
TL;DR: No single functional stands out as the most accurate for all aspects, but B3LYP yields the smallest mean absolute deviation, and M06-2X could be a valuable compromise for excited-states as it reproduces the 0-0 energies and also gives reasonable band shapes.
Abstract: The band shapes corresponding to both the absorption and emission spectra of a set of 20 representative conjugated molecules, including recently synthesized structures, have been simulated with a Time-Dependent Density Functional Theory model including diffuse atomic orbitals and accounting for bulk solvent effects. Six hybrid functionals, including two range-separated hybrids (B3LYP, PBE0, M06, M06-2X, CAM-B3LYP, and LC-PBE) have been assessed in light of the experimental band shapes obtained for these conjugated compounds. Basis set and integration grid effects have also been evaluated. It turned out that all tested functionals but LC-PBE reproduce the main experimental features for both absorption and fluorescence, though the average errors are significantly larger for the latter phenomena. No single functional stands out as the most accurate for all aspects, but B3LYP yields the smallest mean absolute deviation. On the other hand, M06-2X could be a valuable compromise for excited-states as it reproduc...

220 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: The SMD model may be employed with other algorithms for solving the nonhomogeneous Poisson equation for continuum solvation calculations in which the solute is represented by its electron density in real space, including, for example, the conductor-like screening algorithm.
Abstract: We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the “D” stands for “density” to denote that the full solute electron density is used without defining partial atomic charges. “Continuum” denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute−solvent boundary. SMD is a universal solvation model, where “universal” denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonho...

10,945 citations

Journal ArticleDOI
TL;DR: In this paper, a new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented, which allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered.
Abstract: A new implementation of the conductor-like screening solvation model (COSMO) in the GAUSSIAN94 package is presented. It allows Hartree−Fock (HF), density functional (DF) and post-HF energy, and HF and DF gradient calculations: the cavities are modeled on the molecular shape, using recently optimized parameters, and both electrostatic and nonelectrostatic contributions to energies and gradients are considered. The calculated solvation energies for 19 neutral molecules in water are found in very good agreement with experimental data; the solvent-induced geometry relaxation is studied for some closed and open shell molecules, at HF and DF levels. The computational times are very satisfying: the self-consistent energy evaluation needs a time 15−30% longer than the corresponding procedure in vacuo, whereas the calculation of energy gradients is only 25% longer than in vacuo for medium size molecules.

7,616 citations

Journal ArticleDOI
TL;DR: In this paper, a new integral equation formulation of the polarizable continuum model (PCM) is presented, which allows one to treat in a single approach dielectrics of different nature: standard isotropic liquids, intrinsically anisotropic medialike liquid crystals and solid matrices, or ionic solutions.
Abstract: We present a new integral equation formulation of the polarizable continuum model (PCM) which allows one to treat in a single approach dielectrics of different nature: standard isotropic liquids, intrinsically anisotropic medialike liquid crystals and solid matrices, or ionic solutions. The present work shows that integral equation methods may be used with success also for the latter cases, which are usually studied with three-dimensional methods, by far less competitive in terms of computational effort. We present the theoretical bases which underlie the method and some numerical tests which show both a complete equivalence with standard PCM versions for isotropic solvents, and a good efficiency for calculations with anisotropic dielectrics.

5,760 citations