scispace - formally typeset
Search or ask a question
Author

Benita S. Katzenellenbogen

Other affiliations: Dartmouth College, University of Cincinnati, Urbana University  ...read more
Bio: Benita S. Katzenellenbogen is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Estrogen receptor & Estrogen. The author has an hindex of 113, co-authored 394 publications receiving 39585 citations. Previous affiliations of Benita S. Katzenellenbogen include Dartmouth College & University of Cincinnati.


Papers
More filters
Journal ArticleDOI
09 Mar 2001-Cell
TL;DR: A novel paradigm of sex steroid action on osteoblasts, osteocytes, embryonic fibroblasts, and HeLa cells involving activation of a Src/Shc/ERK signaling pathway and attenuating apoptosis is demonstrated, providing proof of principle for the development of function-specific-as opposed to tissue-selective-and gender-neutral pharmacotherapeutics.

1,203 citations

Journal ArticleDOI
TL;DR: Phenol red has been found to have significant estrogenic activity at the concentrations (15-45 microM) at which it is found in tissue culture media as mentioned in this paper, which has been shown to stimulate the proliferation of estrogen receptor-positive MCF-7 breast cancer cells in a dose-dependent manner.
Abstract: Although much attention has been paid to the removal of hormones from sera and to the development of serum-free media for studies on hormone-responsive cells in culture, little consideration has been given to the possibility that the media components themselves may have hormonal activity. We have found that phenol red, which bears a structural resemblance to some nonsteroidal estrogens and which is used ubiquitously as a pH indicator in tissue culture media, has significant estrogenic activity at the concentrations (15-45 microM) at which it is found in tissue culture media. Phenol red binds to the estrogen receptor of MCF-7 human breast cancer cells with an affinity 0.001% that of estradiol (Kd = 2 X 10(-5) M). It stimulates the proliferation of estrogen receptor-positive MCF-7 breast cancer cells in a dose-dependent manner but has no effect on the growth of estrogen receptor-negative MDA-MB-231 breast cancer cells. At the concentrations present in tissue culture media, phenol red causes partial estrogenic stimulation, increasing cell number to 200% and progesterone receptor content to 300% of that found for cells grown in phenol red-free media, thereby reducing the degree to which exogenous estrogen is able to stimulate responses. The antiestrogens tamoxifen and hydroxytamoxifen inhibit cell proliferation below the control level only when cells are grown in the presence of phenol red; in the absence of phenol red, the antiestrogens do not suppress growth. The estrogenic activity of phenol red should be considered in any studies that utilize estrogen-responsive cells in culture.

1,152 citations

01 Jan 2016
TL;DR: It is found that phenol red, which bears a structural resemblance to some nonsteroidal estrogens and which is used ubiquitously as a pH indicator in tissue culture media, has significant estrogenic activity at the concentrations (15-45 microM) at which it is found in tissueculture media.
Abstract: Although much attention has been paid to the removal of hormones from sera and to the development of serum-free media for studies on hormone-responsive cells in culture, little consideration has been given to the possibility that the media components themselves may have hormonal activity. We have found that phenol red, which bears a structural resemblance to some nonsteroidal estrogens and which is used ubiquitously as a pH indicator in tissue culture media, has significant estrogenic activity at the concentrations (1545 ,M) at which it is found In tissue culture media. Phenol red binds to the estrogen receptor of MCF-7 human breast cancer cells with an affinity 0.001% that of estradiol (Kd = 2 x 1O-5 M). It stimulates the proliferation of estrogen receptor-positive MCF-7 breast cancer cells in a dose-dependent manner but has no effect on the growth of estrogen receptor-negative MDA- MB-231 breast cancer cells. At the concentrations present In tissue culture media, phenol red causes partial estrogenic stimulation, increasing cell number to 200% and progesterone receptor content to 300% of that found for cells grown In phenol red-free media, thereby reducing the degree to which exogenous estrogen is able to stimulate responses. The anti- estrogens tamoxifen and hydroxytamoxifen inhibit cell prolif- eration below the control level only when cells are grown in the presence of phenol red; in the absence of phenol red, the antiestrogens do not suppress growth. The estrogenic activity of phenol red should be considered in any studies that utilize estrogen-responsive cells in culture. 0 0 ~~~~~~OCH3 0~~~~

1,144 citations

Journal ArticleDOI
TL;DR: The use of global gene expression profiling by Affymetrix GeneChip microarray analysis to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells is highlighted.
Abstract: Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with quantitative PCR verification in many cases, to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the >12,000 genes queried, over 400 showed a robust pattern of regulation, and, notably, the majority (70%) were down-regulated. We observed a general up-regulation of positive proliferation regulators, including survivin, multiple growth factors, genes involved in cell cycle progression, and regulatory factor-receptor loops, and the down-regulation of transcriptional repressors, such as Mad4 and JunB, and of antiproliferative and proapoptotic genes, including B cell translocation gene-1 and -2, cyclin G2, BCL-2 antagonist/killer 1, BCL 2-interacting killer, caspase 9, and TGFbeta family growth inhibitory factors. These together likely contribute to the stimulation of proliferation and the suppression of apoptosis by E2 in these cells. Of interest, E2 appeared to modulate its own activity through the enhanced expression of genes involved in prostaglandin E production and signaling, which could lead to an increase in aromatase expression and E2 production, as well as the decreased expression of several nuclear receptor coactivators that could impact ER activity. Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which this hormone operates to achieve its widespread effects on breast cancer cells.

817 citations

Journal ArticleDOI
TL;DR: Investigations suggest that the pyrazole triols prefer to bind to ERalpha with their C(3)-phenol in the estradiol A-ring binding pocket and that binding selectivity results from differences in the interaction of thePyrazole core and C(4)-propyl group with portions of the receptor where ERalpha has a smaller residue than ERbeta.
Abstract: We have found that certain tetrasubstituted pyrazoles are high-affinity ligands for the estrogen receptor (ER) (Fink et al Chem Biol 1999, 6, 205-219) and that one pyrazole is considerably more potent as an agonist on the ERalpha than on the ERbeta subtype (Sun et al Endocrinology 1999, 140, 800-804) To investigate what substituent pattern provides optimal ER binding affinity and the greatest enhancement of potency as an ERalpha-selective agonist, we prepared a number of tetrasubstituted pyrazole analogues with defined variations at certain substituent positions Analysis of their binding affinity pattern shows that a C(4)-propyl substituent is optimal and that a p-hydroxyl group on the N(1)-phenyl group also enhances affinity and selectivity for ERalpha The best compound in this series, a propylpyrazole triol (PPT, compound 4g), binds to ERalpha with high affinity (ca 50% that of estradiol), and it has a 410-fold binding affinity preference for ERalpha It also activates gene transcription only through ERalpha Thus, this compound represents the first ERalpha-specific agonist We investigated the molecular basis for the exceptional ERalpha binding affinity and potency selectivity of pyrazole 4g by a further study of structure-affinity relationships in this series and by molecular modeling These investigations suggest that the pyrazole triols prefer to bind to ERalpha with their C(3)-phenol in the estradiol A-ring binding pocket and that binding selectivity results from differences in the interaction of the pyrazole core and C(4)-propyl group with portions of the receptor where ERalpha has a smaller residue than ERbeta These ER subtype-specific interactions and the ER subtype-selective ligands that can be derived from them should prove useful in defining those biological activities in estrogen target cells that can be selectively activated through ERalpha

751 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: It is concluded that clone 29 cDNA encodes a novel rat ER, which is suggested be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.
Abstract: We have cloned a novel member of the nuclear receptor superfamily. The cDNA of clone 29 was isolated from a rat prostate cDNA library and it encodes a protein of 485 amino acid residues with a calculated molecular weight of 54.2 kDa. Clone 29 protein is unique in that it is highly homologous to the rat estrogen receptor (ER) protein, particularly in the DNA-binding domain (95%) and in the C-terminal ligand-binding domain (55%). Expression of clone 29 in rat tissues was investigated by in situ hybridization and prominent expression was found in prostate and ovary. In the prostate clone 29 is expressed in the epithelial cells of the secretory alveoli, whereas in the ovary the granuloma cells in primary, secondary, and mature follicles showed expression of clone 29. Saturation ligand-binding analysis of in vitro synthesized clone 29 protein revealed a single binding component for 17beta-estradiol (E2) with high affinity (Kd= 0.6 nM). In ligand-competition experiments the binding affinity decreased in the order E2 > diethylstilbestrol > estriol > estrone > 5alpha-androstane-3beta,17beta-diol >> testosterone = progesterone = corticosterone = 5alpha-androstane-3alpha,17beta-diol. In cotransfection experiments of Chinese hamster ovary cells with a clone 29 expression vector and an estrogen-regulated reporter gene, maximal stimulation (about 3-fold) of reporter gene activity was found during incubation with 10 nM of E2. Neither progesterone, testosterone, dexamethasone, thyroid hormone, all-trans-retinoic acid, nor 5alpha-androstane-3alpha,I7beta-diol could stimulate reporter gene activity, whereas estrone and 5alpha-androstane-3beta,17beta-diol did. We conclude that clone 29 cDNA encodes a novel rat ER, which we suggest be named rat ERbeta to distinguish it from the previously cloned ER (ERalpha) from rat uterus.

4,782 citations

Journal ArticleDOI
29 Sep 2006-Science
TL;DR: The first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules is created, and it is demonstrated that this “Connectivity Map” resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs.
Abstract: To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.

4,429 citations

Journal ArticleDOI
TL;DR: The messenger RNA expression of both ER subtypes in rat tissues by RT-PCR is investigated and the ligand binding specificity of the ER sub types is compared, revealing a single binding component for 16β-estradiol with high affinity.
Abstract: The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.

4,367 citations

Journal ArticleDOI
TL;DR: The estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ERα or ERβ protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ERβ complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid are investigated.
Abstract: The rat, mouse and human estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand-binding domain and in the N-terminal transactivation domain. In this study, we investigated the estrogenic activity of environmental chemicals and phytoestrogens in competition binding assays with ER alpha or ER beta protein, and in a transient gene expression assay using cells in which an acute estrogenic response is created by cotransfecting cultures with recombinant human ER alpha or ER beta complementary DNA (cDNA) in the presence of an estrogen-dependent reporter plasmid. Saturation ligand-binding analysis of human ER alpha and ER beta protein revealed a single binding component for [3H]-17beta-estradiol (E2) with high affinity [dissociation constant (Kd) = 0.05 - 0.1 nM]. All environmental estrogenic chemicals [polychlorinated hydroxybiphenyls, dichlorodiphenyltrichloroethane (DDT) and derivatives, alkylphenols, bisphenol A, methoxychlor and chlordecone] compete with E2 for binding to both ER subtypes with a similar preference and degree. In most instances the relative binding affinities (RBA) are at least 1000-fold lower than that of E2. Some phytoestrogens such as coumestrol, genistein, apigenin, naringenin, and kaempferol compete stronger with E2 for binding to ER beta than to ER alpha. Estrogenic chemicals, as for instance nonylphenol, bisphenol A, o, p'-DDT and 2',4',6'-trichloro-4-biphenylol stimulate the transcriptional activity of ER alpha and ER beta at concentrations of 100-1000 nM. Phytoestrogens, including genistein, coumestrol and zearalenone stimulate the transcriptional activity of both ER subtypes at concentrations of 1-10 nM. The ranking of the estrogenic potency of phytoestrogens for both ER subtypes in the transactivation assay is different; that is, E2 >> zearalenone = coumestrol > genistein > daidzein > apigenin = phloretin > biochanin A = kaempferol = naringenin > formononetin = ipriflavone = quercetin = chrysin for ER alpha and E2 >> genistein = coumestrol > zearalenone > daidzein > biochanin A = apigenin = kaempferol = naringenin > phloretin = quercetin = ipriflavone = formononetin = chrysin for ER beta. Antiestrogenic activity of the phytoestrogens could not be detected, except for zearalenone which is a full agonist for ER alpha and a mixed agonist-antagonist for ER beta. In summary, while the estrogenic potency of industrial-derived estrogenic chemicals is very limited, the estrogenic potency of phytoestrogens is significant, especially for ER beta, and they may trigger many of the biological responses that are evoked by the physiological estrogens.

4,078 citations