scispace - formally typeset
Search or ask a question
Author

Benjamin Bornstein

Other affiliations: Jet Propulsion Laboratory
Bio: Benjamin Bornstein is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Mars Exploration Program & Exploration of Mars. The author has an hindex of 18, co-authored 62 publications receiving 5262 citations. Previous affiliations of Benjamin Bornstein include Jet Propulsion Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.
Abstract: Motivation: Molecular biotechnology now makes it possible to build elaborate systems models, but the systems biology community needs information standards if models are to be shared, evaluated and developed cooperatively. Results: We summarize the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks. SBML is a software-independent language for describing models common to research in many areas of computational biology, including cell signaling pathways, metabolic pathways, gene regulation, and others. ∗ To whom correspondence should be addressed. Availability: The specification of SBML Level 1 is freely available from http://www.sbml.org/.

3,205 citations

Journal ArticleDOI
TL;DR: TheBioModels Database (), part of the international initiative BioModels.net, provides access to published, peer-reviewed, quantitative models of biochemical and cellular systems.
Abstract: BioModels Database (http://www.ebi.ac.uk/biomodels/), part of the international initiative BioModels.net, provides access to published, peer-reviewed, quantitative models of biochemical and cellular systems. Each model is carefully curated to verify that it corresponds to the reference publication and gives the proper numerical results. Curators also annotate the components of the models with terms from controlled vocabularies and links to other relevant data resources. This allows the users to search accurately for the models they need. The models can currently be retrieved in the SBML format, and import/export facilities are being developed to extend the spectrum of formats supported by the resource.

798 citations

Journal ArticleDOI
TL;DR: LibSBML is an application programming interface library for reading, writing, manipulating and validating content expressed in the Systems Biology Markup Language (SBML) format that provides language bindings for Common Lisp, Java, Python, Perl, MATLAB and Octave.
Abstract: LibSBML is an application programming interface library for reading, writing, manipulating and validating content expressed in the Systems Biology Markup Language (SBML) format. It is written in ISO C and C++, provides language bindings for Common Lisp, Java, Python, Perl, MATLAB and Octave, and includes many features that facilitate adoption and use of both SBML and the library. Developers can embed libSBML in their applications, saving themselves the work of implementing their own SBML parsing, manipulation and validation software.

397 citations

Journal ArticleDOI
20 Sep 2004
TL;DR: The current and upcoming versions of SBML are summarized and efforts at developing software infrastructure for supporting and broadening its use are outlined.
Abstract: Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

253 citations

Journal ArticleDOI
TL;DR: SBMLToolbox provides functionality that enables an experienced user of either SBML or MATLAB to combine the computing power of MATLAB with the portability and exchangeability of an SBML model.
Abstract: Summary: We present SBMLToolbox, a toolbox that facilitates importing and exporting models represented in the Systems Biology Markup Language (SBML) in and out of the MATLAB environment and provides functionality that enables an experienced user of either SBML or MATLAB to combine the computing power of MATLAB with the portability and exchangeability of an SBML model. SBMLToolbox supports all levels and versions of SBML. Availability: SBMLToolbox is freely available from http://sbml.org/software/sbmltoolbox Contact: s.m.keating@herts.ac.uk

147 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The Reactome Knowledgebase provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model.
Abstract: The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.

5,065 citations

Journal ArticleDOI
TL;DR: An update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING), which provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information.
Abstract: An essential prerequisite for any systems-level understanding of cellular functions is to correctly uncover and annotate all functional interactions among proteins in the cell. Toward this goal, remarkable progress has been made in recent years, both in terms of experimental measurements and computational prediction techniques. However, public efforts to collect and present protein interaction information have struggled to keep up with the pace of interaction discovery, partly because protein-protein interaction information can be error-prone and require considerable effort to annotate. Here, we present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score, and accessory information such as protein domains and 3D structures is made available, all within a stable and consistent identifier space. New features in STRING include an interactive network viewer that can cluster networks on demand, updated on-screen previews of structural information including homology models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org.

3,239 citations

Journal ArticleDOI
TL;DR: This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.
Abstract: Flux balance analysis is a mathematical approach for analyzing the flow of metabolites through a metabolic network. This primer covers the theoretical basis of the approach, several practical examples and a software toolbox for performing the calculations.

3,229 citations

Journal ArticleDOI
TL;DR: COPASI is presented, a platform-independent and user-friendly biochemical simulator that offers several unique features, and numerical issues with these features are discussed; in particular, the criteria to switch between stochastic and deterministic simulation methods, hybrid deterministic-stochastic methods, and the importance of random number generator numerical resolution in Stochastic simulation.
Abstract: Motivation: Simulation and modeling is becoming a standard approach to understand complex biochemical processes. Therefore, there is a big need for software tools that allow access to diverse simulation and modeling methods as well as support for the usage of these methods. Results: Here, we present COPASI, a platform-independent and user-friendly biochemical simulator that offers several unique features. We discuss numerical issues with these features; in particular, the criteria to switch between stochastic and deterministic simulation methods, hybrid deterministic--stochastic methods, and the importance of random number generator numerical resolution in stochastic simulation. Availability: The complete software is available in binary (executable) for MS Windows, OS X, Linux (Intel) and Sun Solaris (SPARC), as well as the full source code under an open source license from http://www.copasi.org. Contact: mendes@vbi.vt.edu

2,351 citations