scispace - formally typeset
Search or ask a question
Author

Benjamin C. Lee

Other affiliations: Microsoft, Stanford University, Harvard University  ...read more
Bio: Benjamin C. Lee is an academic researcher from Duke University. The author has contributed to research in topics: Efficient energy use & Design space exploration. The author has an hindex of 26, co-authored 72 publications receiving 6084 citations. Previous affiliations of Benjamin C. Lee include Microsoft & Stanford University.


Papers
More filters
Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work proposes, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM.
Abstract: Memory scaling is in jeopardy as charge storage and sensing mechanisms become less reliable for prevalent memory technologies, such as DRAM. In contrast, phase change memory (PCM) storage relies on scalable current and thermal mechanisms. To exploit PCM's scalability as a DRAM alternative, PCM must be architected to address relatively long latencies, high energy writes, and finite endurance.We propose, crafted from a fundamental understanding of PCM technology parameters, area-neutral architectural enhancements that address these limitations and make PCM competitive with DRAM. A baseline PCM system is 1.6x slower and requires 2.2x more energy than a DRAM system. Buffer reorganizations reduce this delay and energy gap to 1.2x and 1.0x, using narrow rows to mitigate write energy and multiple rows to improve locality and write coalescing. Partial writes enhance memory endurance, providing 5.6 years of lifetime. Process scaling will further reduce PCM energy costs and improve endurance.

1,568 citations

Proceedings ArticleDOI
11 Oct 2009
TL;DR: A file system and a hardware architecture that are designed around the properties of persistent, byteaddressable memory, which provides strong reliability guarantees and offers better performance than traditional file systems, even when both are run on top of byte-addressable, persistent memory.
Abstract: Modern computer systems have been built around the assumption that persistent storage is accessed via a slow, block-based interface. However, new byte-addressable, persistent memory technologies such as phase change memory (PCM) offer fast, fine-grained access to persistent storage.In this paper, we present a file system and a hardware architecture that are designed around the properties of persistent, byteaddressable memory. Our file system, BPFS, uses a new technique called short-circuit shadow paging to provide atomic, fine-grained updates to persistent storage. As a result, BPFS provides strong reliability guarantees and offers better performance than traditional file systems, even when both are run on top of byte-addressable, persistent memory. Our hardware architecture enforces atomicity and ordering guarantees required by BPFS while still providing the performance benefits of the L1 and L2 caches.Since these memory technologies are not yet widely available, we evaluate BPFS on DRAM against NTFS on both a RAM disk and a traditional disk. Then, we use microarchitectural simulations to estimate the performance of BPFS on PCM. Despite providing strong safety and consistency guarantees, BPFS on DRAM is typically twice as fast as NTFS on a RAM disk and 4-10 times faster than NTFS on disk. We also show that BPFS on PCM should be significantly faster than a traditional disk-based file system.

935 citations

Proceedings ArticleDOI
20 Oct 2006
TL;DR: This paper derives and validate regression models for performance and power, and presents optimizations for a baseline regression model to obtain application-specific models to maximize accuracy in performance prediction and regional power models leveraging only the most relevant samples from the microarchitectural design space to maximizing accuracy in power prediction.
Abstract: We propose regression modeling as an efficient approach for accurately predicting performance and power for various applications executing on any microprocessor configuration in a large microarchitectural design space. This paper addresses fundamental challenges in microarchitectural simulation cost by reducing the number of required simulations and using simulated results more effectively via statistical modeling and inference.Specifically, we derive and validate regression models for performance and power. Such models enable computationally efficient statistical inference, requiring the simulation of only 1 in 5 million points of a joint microarchitecture-application design space while achieving median error rates as low as 4.1 percent for performance and 4.3 percent for power. Although both models achieve similar accuracy, the sources of accuracy are strikingly different. We present optimizations for a baseline regression model to obtain (1) application-specific models to maximize accuracy in performance prediction and (2) regional power models leveraging only the most relevant samples from the microarchitectural design space to maximize accuracy in power prediction. Assessing sensitivity to the number of samples simulated for model formulation, we find fewer than 4,000 samples from a design space of approximately 22 billion points are sufficient. Collectively, our results suggest significant potential in accurate and efficient statistical inference for microarchitectural design space exploration via regression models.

472 citations

Proceedings ArticleDOI
19 Jun 2010
TL;DR: The sources of these performance and energy overheads in general-purpose processing systems are explored by quantifying the overheads of a 720p HD H.264 encoder running on a general- Purpose CMP system and exploring methods to eliminate these overheads by transforming the CPU into a specialized system for H. 264 encoding.
Abstract: Due to their high volume, general-purpose processors, and now chip multiprocessors (CMPs), are much more cost effective than ASICs, but lag significantly in terms of performance and energy efficiency. This paper explores the sources of these performance and energy overheads in general-purpose processing systems by quantifying the overheads of a 720p HD H.264 encoder running on a general-purpose CMP system. It then explores methods to eliminate these overheads by transforming the CPU into a specialized system for H.264 encoding. We evaluate the gains from customizations useful to broad classes of algorithms, such as SIMD units, as well as those specific to particular computation, such as customized storage and functional units. The ASIC is 500x more energy efficient than our original four-processor CMP. Broadly applicable optimizations improve performance by 10x and energy by 7x. However, the very low energy costs of actual core ops (100s fJ in 90nm) mean that over 90% of the energy used in these solutions is still "overhead". Achieving ASIC-like performance and efficiency requires algorithm-specific optimizations. For each sub-algorithm of H.264, we create a large, specialized functional unit that is capable of executing 100s of operations per instruction. This improves performance and energy by an additional 25x and the final customized CMP matches an ASIC solution's performance within 3x of its energy and within comparable area.

460 citations

Journal ArticleDOI
TL;DR: This article discusses how to mitigate limitations through buffer sizing, row caching, write reduction, and wear leveling, to make PCM a viable dream alternative for scalable main memories.
Abstract: Phase-change may enable continued scaling of main memories, but PCM has higher access latencies, incurs higher power costs, and wears out more quickly than DRAM. This article discusses how to mitigate these limitations through buffer sizing, row caching, write reduction, and wear leveling, to make PCM a viable dream alternative for scalable main memories.

454 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: The Roofline model offers insight on how to improve the performance of software and hardware in the rapidly changing world of connected devices.
Abstract: The Roofline model offers insight on how to improve the performance of software and hardware.

2,181 citations

Journal ArticleDOI
TL;DR: Eyeriss as mentioned in this paper is an accelerator for state-of-the-art deep convolutional neural networks (CNNs) that optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, by reconfiguring the architecture.
Abstract: Eyeriss is an accelerator for state-of-the-art deep convolutional neural networks (CNNs). It optimizes for the energy efficiency of the entire system, including the accelerator chip and off-chip DRAM, for various CNN shapes by reconfiguring the architecture. CNNs are widely used in modern AI systems but also bring challenges on throughput and energy efficiency to the underlying hardware. This is because its computation requires a large amount of data, creating significant data movement from on-chip and off-chip that is more energy-consuming than computation. Minimizing data movement energy cost for any CNN shape, therefore, is the key to high throughput and energy efficiency. Eyeriss achieves these goals by using a proposed processing dataflow, called row stationary (RS), on a spatial architecture with 168 processing elements. RS dataflow reconfigures the computation mapping of a given shape, which optimizes energy efficiency by maximally reusing data locally to reduce expensive data movement, such as DRAM accesses. Compression and data gating are also applied to further improve energy efficiency. Eyeriss processes the convolutional layers at 35 frames/s and 0.0029 DRAM access/multiply and accumulation (MAC) for AlexNet at 278 mW (batch size $N = 4$ ), and 0.7 frames/s and 0.0035 DRAM access/MAC for VGG-16 at 236 mW ( $N = 3$ ).

2,165 citations

Book ChapterDOI
30 Dec 2011
TL;DR: This table lists the most common surnames in the United States used to be Anglicised as "United States", then changed to "United Kingdom" in the 1990s.
Abstract: OUTPU T 29 OUTPU T 30 OUTPU T 31 OUTPU T 32 OUTPU T 25 OUTPU T 26 OUTPU T 27 OUTPU T 28 OUTPU T 21 OUTPU T 22 OUTPU T 23 OUTPU T 24 OUTPU T 17 OUTPU T 18 OUTPU T 19 OUTPU T 20 OUTPU T 13 OUTPU T 14 OUTPU T 15 OUTPU T 16 OUTPU T 9 OUTPU T 10 OUTPU T 11 OUTPU T 12 OUTPU T 5 OUTPU T 6 OUTPU T 7 OUTPU T 8 OUTPU T 1 OUTPU T 2 OUTPU T 3 OUTPU T 4 29 30 31 32 25 26 27 28 21 22 23 24 17 18 19 20 13 14 15 16 9

1,662 citations

Proceedings ArticleDOI
24 Feb 2014
TL;DR: This study designs an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance and energy, and shows that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s in a small footprint.
Abstract: Machine-Learning tasks are becoming pervasive in a broad range of domains, and in a broad range of systems (from embedded systems to data centers). At the same time, a small set of machine-learning algorithms (especially Convolutional and Deep Neural Networks, i.e., CNNs and DNNs) are proving to be state-of-the-art across many applications. As architectures evolve towards heterogeneous multi-cores composed of a mix of cores and accelerators, a machine-learning accelerator can achieve the rare combination of efficiency (due to the small number of target algorithms) and broad application scope. Until now, most machine-learning accelerator designs have focused on efficiently implementing the computational part of the algorithms. However, recent state-of-the-art CNNs and DNNs are characterized by their large size. In this study, we design an accelerator for large-scale CNNs and DNNs, with a special emphasis on the impact of memory on accelerator design, performance and energy. We show that it is possible to design an accelerator with a high throughput, capable of performing 452 GOP/s (key NN operations such as synaptic weight multiplications and neurons outputs additions) in a small footprint of 3.02 mm2 and 485 mW; compared to a 128-bit 2GHz SIMD processor, the accelerator is 117.87x faster, and it can reduce the total energy by 21.08x. The accelerator characteristics are obtained after layout at 65 nm. Such a high throughput in a small footprint can open up the usage of state-of-the-art machine-learning algorithms in a broad set of systems and for a broad set of applications.

1,582 citations