scispace - formally typeset
Search or ask a question
Author

Benjamin D. Myers

Bio: Benjamin D. Myers is an academic researcher from Northwestern University. The author has contributed to research in topics: Nanoparticle & Electron-beam lithography. The author has an hindex of 16, co-authored 36 publications receiving 2366 citations. Previous affiliations of Benjamin D. Myers include University of Illinois at Urbana–Champaign.

Papers
More filters
Journal ArticleDOI
18 Dec 2015-Science
TL;DR: At Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling that are consistent with predictions of a highly an isotropic, 2D metal.
Abstract: At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

1,873 citations

Journal ArticleDOI
TL;DR: In this article, angle-resolved nanosphere lithography (AR NSL) and reactive ion etching (RIE) are combined to fabricate ordered arrays of in-plane, triangular cross-section nanopores.
Abstract: Nanosphere lithography (NSL) is combined with reactive ion etching (RIE) to fabricate ordered arrays of in-plane, triangular cross-section nanopores. Nanopores with in-plane widths ranging from 44 to 404 nm and depths ranging from 25 to 250 nm are demonstrated. The combination of angle-resolved nanosphere lithography (AR NSL) and RIE yields an additional three-fold reduction in nanopore size.

134 citations

Journal ArticleDOI
TL;DR: A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors to give an ultra-high areal capacitance.
Abstract: A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm−2 at a current density of 27.2 μA cm−2.

108 citations

Journal ArticleDOI
TL;DR: In this paper, high-purity Cu samples containing parallel columns of highly aligned nanotwins separated by coherent Σ3 twin boundaries (TBs) with median spacing of about 35nm were subjected to tension-tension fatigue.

101 citations

Journal ArticleDOI
TL;DR: In this paper, a dose-controlled electron irradiation technique to introduce oxygen vacancies into the few-layer molybdenum trioxide (MoO3) structure is presented, thereby adding n-type doping.
Abstract: Bulk and nanoscale molybdenum trioxide (MoO3) has shown impressive technologically relevant properties, but deeper investigation into 2D MoO3 has been prevented by the lack of reliable vapor-based synthesis and doping techniques. Herein, the successful synthesis of high-quality, few-layer MoO3 down to bilayer thickness via physical vapor deposition is reported. The electronic structure of MoO3 can be strongly modified by introducing oxygen substoichiometry (MoO3−x), which introduces gap states and increases conductivity. A dose-controlled electron irradiation technique to introduce oxygen vacancies into the few-layer MoO3 structure is presented, thereby adding n-type doping. By combining in situ transport with core-loss and monochromated low-loss scanning transmission electron microscopy–electron energy-loss spectroscopy studies, a detailed structure–property relationship is developed between Mo-oxidation state and resistance. Transport properties are reported for MoO3−x down to three layers thick, the most 2D-like MoO3−x transport hitherto reported. Combining these results with density functional theory calculations, a radiolysis-based mechanism for the irradiation-induced oxygen vacancy introduction is developed, including insights into favorable configurations of oxygen defects. These systematic studies represent an important step forward in bringing few-layer MoO3 and MoO3−x into the 2D family, as well as highlight the promise of MoO3−x as a functional, tunable electronic material.

87 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The unique advances on ultrathin 2D nanomaterials are introduced, followed by the description of their composition and crystal structures, and the assortments of their synthetic methods are summarized.
Abstract: Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocat...

3,628 citations

Journal ArticleDOI
17 Feb 2012-Science
TL;DR: The specific features of supramolecular polymers that can lead to applications in a variety of fields are reviewed, including: materials—in which processability and self-healing properties are of interest; biomedicine— in which the concerns are dynamic functionality and biodegradability; and hierarchical assembly and electronic systems—with an interest in unidirectionality of charge flow.
Abstract: Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton and possess useful biological and electronic functions.

2,777 citations

Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations

Journal ArticleDOI
TL;DR: In this paper, the recent progress in 2D materials beyond graphene and includes mainly transition metal dichalcogenides (TMDs) (e.g., MoS2, WS2, MoSe2, and WSe2).

1,728 citations

Journal ArticleDOI
TL;DR: In this work, dark-field microscopy is used to observe a new plasmon resonance effect for a single silver nanocube in which the plAsmon line shape has two distinct peaks when the particles are located on a glass substrate.
Abstract: In this work, we use dark-field microscopy to observe a new plasmon resonance effect for a single silver nanocube in which the plasmon line shape has two distinct peaks when the particles are located on a glass substrate. The dependence of the resonance on nanocube size and shape is characterized, and it is found that the bluer peak has a higher figure of merit for chemical sensing applications than that for other particle shapes that have been studied previously. Comparison of the measured results with finite difference time domain (FDTD) electrodynamics calculations enables us to confirm the accuracy of our spectral assignments.

1,370 citations