scispace - formally typeset
Search or ask a question
Author

Benjamin Gille

Bio: Benjamin Gille is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Amyotrophic lateral sclerosis & Opsoclonus. The author has an hindex of 6, co-authored 8 publications receiving 281 citations. Previous affiliations of Benjamin Gille include Allen Institute for Brain Science & Paris Diderot University.

Papers
More filters
Journal ArticleDOI
TL;DR: This study provides Class II evidence that elevated concentrations of CSF pNfH and NfL can accurately identify patients with ALS and shows an added value as diagnostic biomarkers for ALS, whereas the prognostic value of pNFH andNfL warrants further investigation.
Abstract: Objective: To determine the diagnostic performance and prognostic value of phosphorylated neurofilament heavy chain (pNfH) and neurofilament light chain (NfL) in CSF as possible biomarkers for amyotrophic lateral sclerosis (ALS) at the diagnostic phase. Methods: We measured CSF pNfH and NfL concentrations in 220 patients with ALS, 316 neurologic disease controls (DC), and 50 genuine disease mimics (DM) to determine and assess the accuracy of the diagnostic cutoff value for pNfH and NfL and to correlate with other clinical parameters. Results: pNfH was most specific for motor neuron disease (specificity 88.2% [confidence interval (CI) 83.0%–92.3%]). pNfH had the best performance to differentially diagnose patients with ALS from DM with a sensitivity of 90.7% (CI 84.9%–94.8%), a specificity of 88.0% (CI 75.7%–95.5%) and a likelihood ratio of 7.6 (CI 3.6–16.0) at a cutoff of 768 pg/mL. CSF pNfH and NfL levels were significantly lower in slow disease progressors, however, with a poor prognostic performance with respect to the disease progression rate. CSF pNfH and NfL levels increased significantly as function of the number of regions with both upper and lower motor involvement. Conclusions: In particular, CSF pNfH concentrations show an added value as diagnostic biomarkers for ALS, whereas the prognostic value of pNfH and NfL warrants further investigation. Both pNfH and NfL correlated with the extent of motor neuron degeneration. Classification of evidence: This study provides Class II evidence that elevated concentrations of CSF pNfH and NfL can accurately identify patients with ALS.

156 citations

Journal ArticleDOI
TL;DR: The aims of this study were to further explore the prognostic and diagnostic performances of serum N fL to discriminate between patients with ALS and ALS mimics, and to investigate the relationship between serum NfL with motor neuron degeneration.
Abstract: AIMS Amyotrophic lateral sclerosis (ALS) is the most common motor neuron degeneration disease with a diagnostic delay of about 1 year after symptoms onset. In ALS, blood neurofilament light chain (NfL) levels are elevated, but it is not entirely clear what drives this increase and what the diagnostic performance of serum NfL is in terms of predictive values and likelihood ratios. The aims of this study were to further explore the prognostic and diagnostic performances of serum NfL to discriminate between patients with ALS and ALS mimics, and to investigate the relationship between serum NfL with motor neuron degeneration. METHODS The diagnostic performances of serum NfL were based on a cohort of 149 serum samples of patients with ALS, 19 serum samples of patients with a disease mimicking ALS and 82 serum samples of disease control patients. The serum NfL levels were correlated with the number of regions (thoracic, bulbar, upper limb and lower limb) displaying upper and/or lower motor neuron degeneration. The prognostic performances of serum NfL were investigated based on a Cox regression analysis. RESULTS The associated predictive values and likelihood ratio to discriminate patients with ALS and ALS mimics were established. Serum NfL was associated with motor neuron degeneration driven by upper motor neuron (UMN) degeneration and was independently associated with survival in patients with ALS. CONCLUSIONS Altogether, these findings suggest that elevated serum NfL levels in ALS are driven by UMN degeneration and the disease progression rate and are independently associated with survival at time of diagnosis.

74 citations

Journal ArticleDOI
TL;DR: CSF and serum pNfH concentrations are elevated in patients with ALS and correlate with the disease progression rate, and CSF pNFH correlates with the burden of motor neuron dysfunction.
Abstract: Objective Phosphorylated neurofilament heavy chain (pNfH) levels are elevated in cerebrospinal fluid (CSF) of patients with amyotrophic lateral sclerosis (ALS). Instead of CSF, we explored blood as an alternative source to measure pNfH in patients with ALS. Methods In this single centre retrospective study, 85 patients with ALS, 215 disease controls (DC) and 31 ALS mimics were included. Individual serum pNfH concentrations were correlated with concentrations in CSF and with several clinical parameters. The performance characteristics of pNfH in CSF and serum of patients with ALS and controls were calculated and compared using receiver operating characteristic (ROC) curves. Results CSF and serum pNfH concentrations in patients with ALS correlated well (r=0.652, p Conclusions CSF and serum pNfH concentrations are elevated in patients with ALS and correlate with the disease progression rate. Moreover, CSF pNfH correlates with the burden of motor neuron dysfunction. Our findings encourage further pursuit of CSF and serum pNfH concentrations in the diagnostic pathway of patients suspected to have ALS.

72 citations

Journal ArticleDOI
TL;DR: ELISA and SIMOA demonstrated equivalent performances in detecting cerebral amyloidosis through plasma Aβ 1–42 /Aβ 1-40 , both with high negative predictive values, making them equally suitable non-invasive prescreening tools for clinical trials by reducing the number of necessary PET scans for clinical trial recruitment.
Abstract: Blood-based amyloid biomarkers may provide a non-invasive, cost-effective and scalable manner for detecting cerebral amyloidosis in early disease stages. In this prospective cross-sectional study, we quantified plasma Aβ1–42/Aβ1–40 ratios with both routinely available ELISAs and novel SIMOA Amyblood assays, and provided a head-to-head comparison of their performances to detect cerebral amyloidosis in a nondemented elderly cohort (n = 199). Participants were stratified according to amyloid-PET status, and the performance of plasma Aβ1–42/Aβ1–40 to detect cerebral amyloidosis was assessed using receiver operating characteristic analysis. We additionally investigated the correlations of plasma Aβ ratios with amyloid-PET and CSF Alzheimer’s disease biomarkers, as well as platform agreement using Passing-Bablok regression and Bland-Altman analysis for both Aβ isoforms. ELISA and SIMOA plasma Aβ1–42/Aβ1–40 detected cerebral amyloidosis with identical accuracy (ELISA: area under curve (AUC) 0.78, 95% CI 0.72–0.84; SIMOA: AUC 0.79, 95% CI 0.73–0.85), and both increased the performance of a basic demographic model including only age and APOE-e4 genotype (p ≤ 0.02). ELISA and SIMOA had positive predictive values of respectively 41% and 36% in cognitively normal elderly and negative predictive values all exceeding 88%. Plasma Aβ1–42/Aβ1–40 correlated similarly with amyloid-PET for both platforms (Spearman ρ = − 0.32, p < 0.0001), yet correlations with CSF Aβ1–42/t-tau were stronger for ELISA (ρ = 0.41, p = 0.002) than for SIMOA (ρ = 0.29, p = 0.03). Plasma Aβ levels demonstrated poor agreement between ELISA and SIMOA with concentrations of both Aβ1–42 and Aβ1–40 measured by SIMOA consistently underestimating those measured by ELISA. ELISA and SIMOA demonstrated equivalent performances in detecting cerebral amyloidosis through plasma Aβ1–42/Aβ1–40, both with high negative predictive values, making them equally suitable non-invasive prescreening tools for clinical trials by reducing the number of necessary PET scans for clinical trial recruitment. EudraCT 2009-014475-45 (registered on 23 Sept 2009) and EudraCT 2013-004671-12 (registered on 20 May 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-004671-12/BE ).

44 citations

Journal ArticleDOI
TL;DR: Findings show that inflammation in patients with ALS reflects the disease progression as an independent predictor of survival, and encourage the use of inflammatory markers in patient stratification and as surrogate markers of therapy response in clinical trials.
Abstract: Objective Inflammation is a key pathological hallmark in amyotrophic lateral sclerosis (ALS), which seems to be linked to the disease progression. It is not clear what the added diagnostic and prognostic value are of inflammatory markers in the cerebrospinal fluid (CSF) of patients with ALS. Methods Chitotriosidase-1 (CHIT1), chitinase-3-like protein 1 (YKL-40) and monocyte chemoattractant protein-1 (MCP-1) were measured in CSF and serum of patients with ALS (n=105), disease controls (n=102) and patients with a disease mimicking ALS (n=16). The discriminatory performance was evaluated by means of a receiver operating characteristic curve analysis. CSF and serum levels were correlated with several clinical parameters. A multivariate Cox regression analysis, including eight other established prognostic markers, was used to evaluate survival in ALS. Results In CSF, CHIT1, YKL-40 and MCP-1 showed a weak discriminatory performance between ALS and ALS mimics (area under the curve: 0.79, p Conclusions Our findings show that inflammation in patients with ALS reflects the disease progression as an independent predictor of survival. Our data encourage the use of inflammatory markers in patient stratification and as surrogate markers of therapy response in clinical trials.

43 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: How technological advances have enabled the detection of neurofilament proteins in the blood is considered, and how these proteins consequently have the potential to be easily measured biomarkers of neuroaxonal injury in various neurological conditions are discussed.
Abstract: Neuroaxonal damage is the pathological substrate of permanent disability in various neurological disorders. Reliable quantification and longitudinal follow-up of such damage are important for assessing disease activity, monitoring treatment responses, facilitating treatment development and determining prognosis. The neurofilament proteins have promise in this context because their levels rise upon neuroaxonal damage not only in the cerebrospinal fluid (CSF) but also in blood, and they indicate neuroaxonal injury independent of causal pathways. First-generation (immunoblot) and second-generation (enzyme-linked immunosorbent assay) neurofilament assays had limited sensitivity. Third-generation (electrochemiluminescence) and particularly fourth-generation (single-molecule array) assays enable the reliable measurement of neurofilaments throughout the range of concentrations found in blood samples. This technological advancement has paved the way to investigate neurofilaments in a range of neurological disorders. Here, we review what is known about the structure and function of neurofilaments, discuss analytical aspects and knowledge of age-dependent normal ranges of neurofilaments and provide a comprehensive overview of studies on neurofilament light chain as a marker of axonal injury in different neurological disorders, including multiple sclerosis, neurodegenerative dementia, stroke, traumatic brain injury, amyotrophic lateral sclerosis and Parkinson disease. We also consider work needed to explore the value of this axonal damage marker in managing neurological diseases in daily practice.

1,038 citations

Journal ArticleDOI
TL;DR: Two possible disease-modifying therapies that can slow disease progression are available for ALS, but patient management is largely mediated by symptomatic therapies, such as the use of muscle relaxants for spasticity and speech therapy for dysarthria.

540 citations

Journal ArticleDOI
TL;DR: Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and N fL is one of the most promising biomarkers to be used in clinical and research setting in the next future.
Abstract: In the management of neurological diseases, the identification and quantification of axonal damage could allow for the improvement of diagnostic accuracy and prognostic assessment. Neurofilament light chain (NfL) is a neuronal cytoplasmic protein highly expressed in large calibre myelinated axons. Its levels increase in cerebrospinal fluid (CSF) and blood proportionally to the degree of axonal damage in a variety of neurological disorders, including inflammatory, neurodegenerative, traumatic and cerebrovascular diseases. New immunoassays able to detect biomarkers at ultralow levels have allowed for the measurement of NfL in blood, thus making it possible to easily and repeatedly measure NfL for monitoring diseases’ courses. Evidence that both CSF and blood NfL may serve as diagnostic, prognostic and monitoring biomarkers in neurological diseases is progressively increasing, and NfL is one of the most promising biomarkers to be used in clinical and research setting in the next future. Here we review the most important results on CSF and blood NfL and we discuss its potential applications and future directions.

519 citations

Journal ArticleDOI
TL;DR: Different aspects of ALS are discussed, including epidemiology, aetiology, pathogenesis, clinical features, differential diagnosis, investigations, treatment and future prospects.
Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting primarily the motor system, but in which extra-motor manifestations are increasingly recognized. The loss of upper and lower motor neurons in the motor cortex, the brain stem nuclei and the anterior horn of the spinal cord gives rise to progressive muscle weakness and wasting. ALS often has a focal onset but subsequently spreads to different body regions, where failure of respiratory muscles typically limits survival to 2-5 years after disease onset. In up to 50% of cases, there are extra-motor manifestations such as changes in behaviour, executive dysfunction and language problems. In 10%-15% of patients, these problems are severe enough to meet the clinical criteria of frontotemporal dementia (FTD). In 10% of ALS patients, the family history suggests an autosomal dominant inheritance pattern. The remaining 90% have no affected family members and are classified as sporadic ALS. The causes of ALS appear to be heterogeneous and are only partially understood. To date, more than 20 genes have been associated with ALS. The most common genetic cause is a hexanucleotide repeat expansion in the C9orf72 gene, responsible for 30%-50% of familial ALS and 7% of sporadic ALS. These expansions are also a frequent cause of frontotemporal dementia, emphasizing the molecular overlap between ALS and FTD. To this day there is no cure or effective treatment for ALS and the cornerstone of treatment remains multidisciplinary care, including nutritional and respiratory support and symptom management. In this review, different aspects of ALS are discussed, including epidemiology, aetiology, pathogenesis, clinical features, differential diagnosis, investigations, treatment and future prospects.

318 citations

Journal ArticleDOI
TL;DR: For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality as discussed by the authors , and the question emerges of when and how we can bring these biomarkers to clinical practice.
Abstract: For many years, blood-based biomarkers for Alzheimer's disease seemed unattainable, but recent results have shown that they could become a reality. Convincing data generated with new high-sensitivity assays have emerged with remarkable consistency across different cohorts, but also independent of the precise analytical method used. Concentrations in blood of amyloid and phosphorylated tau proteins associate with the corresponding concentrations in CSF and with amyloid-PET or tau-PET scans. Moreover, other blood-based biomarkers of neurodegeneration, such as neurofilament light chain and glial fibrillary acidic protein, appear to provide information on disease progression and potential for monitoring treatment effects. Now the question emerges of when and how we can bring these biomarkers to clinical practice. This step would pave the way for blood-based biomarkers to support the diagnosis of, and development of treatments for, Alzheimer's disease and other dementias.

197 citations